scholarly journals Formulation and development of metformin-loaded microspheres using Khaya senegalensis (Meliaceae) gum as co-polymer

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.

Author(s):  
S. Sivaprasad ◽  
V. Alagarsamy ◽  
M. Prathibha Bharathi ◽  
P.V. Murali Krishna ◽  
K. Sandeeep Kanna

The main objective of the present study was to design a controlled release dosage form for an oral anti diabetic drug i.e. repaglinide employing polymers like eudragit s- 100. One of the other objective of this present study was to increase the biological half-life the drug by formulating into microspheres. The microspheres of repaglinide were prepared by solvent evaporation method by using eudragit s-100 and ethyl cellulose as polymers with different concentrations. Formulations (F1-F10) were prepared and evaluated for various micrometric properties and it was observed that though all the formulations were exhibited good flow properties, The F5 formulation exhibits higher in- vitro buoyancy time and entrapment efficiency which is considered for in- vitro and mucoadhesive studies. The FTIR results reveal that there was no interaction between the drug and the excipients. The in- vitro release profiles of F1-F5 indicated that all formulations showed controlled release over an extended period, with acceptable release kinetics. Among the all formulations F5 were considered as a promising candidate for sustain release of repaglinide.


2013 ◽  
Vol 63 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Hemanta Kumar Sharma ◽  
Sunita Lahkar ◽  
Lila Kanta Nath

The present work envisages utilisation of biodegradable and biocompatible material from natural sources for the development of controlled release microspheres of metformin hydrochloride (MetH). Natural polysaccharides extracted from Dillenia indica L. (DI), Abelmoschus esculentus L. (AE) and Bora rice flour were used in fabricating controlled release microspheres. The microspheres were prepared by the emulsion solvent diffusion technique with different proportions of natural materials and were studied for entrapment efficiency, particle size, particle shape, surface morphology, drug excipient compatibility, mucoadhesivity and in vitro release properties. The prepared microspheres showed mucoadhesive properties and controlled release of metformin hydrochloride. The study has revealed that natural materials can be used for formulation of controlled release microspheres and will provide ample opportunities for further study


2016 ◽  
Vol 1 (3) ◽  
pp. 396-405
Author(s):  
Johura Ansary ◽  
Amit Kumar Chaurasiya ◽  
KM Bashirul Huq

The purpose of the present investigation was the preparation and evaluation of gastro-retentive floating drug delivery system for anti-diabetic drug metformin hydrochloride that would retain the drug in stomach and continuously release the drug in controlled manner up to a predetermined time leading to improve bioavailability. The microspheres were prepared by oil-in-oil emulsion solvent evaporation technique using ethyl cellulose, methacrylic acid copolymer (Eudragit RS100, Eudragit RSPO and Eudragit RLPO). The dried floating microspheres were evaluated for percentage yield (%), actul drug content (%), drug entrapment efficiency, floating behavior, scanning electron microscopy and in vitro drug release studies. The microspheres were found spherical, porous and free flowing with a size range. Compatibility studies were performed by fourier transform infra-redand (FTIR) and differential thermal analysis (DTA) techniques. The DTA and FTIR data stated that drug and excipient were compatible. In-vitro release kinetics were studied in different mathematical release models following the zero order, Higuchi and Korsemeyer to find out the linear relationship and release rate of drug. The drug might be released by both diffusion and erosion as the correlation coefficient (R2) best fitted with Korsemeyer model and release exponent (n) was 0.45-0.89. In most cases good in vitro floating behavior was observed and a broad variety of drug release pattern was achieved by variation of the polymer which optimized to match target release profile. The developed floating microspheres of metformin hydrochloride may be used in clinic for prolonged drug release in stomach for at least 8 hrs, thereby improving the bioavailability and patient compliance.Asian J. Med. Biol. Res. December 2015, 1(3): 396-405


Author(s):  
AHMED GARDOUH ◽  
Samar H. Faheim ◽  
Samar M. Solyman

Objective: The main purpose of this work was to prepare tolnaftate (TOL) loaded nanostructured lipid carriers (NLCs), Evaluate its characteristics and in vitro release study. Methods: Tolnaftate loaded Nanostructured lipid carriers were prepared by the high shear homogenization method using different liquid lipids types (DERMAROL DCO® and DERMAROL CCT®) and concentrations, different concentration ratios of tween80® to span20® and different homogenization speeds. All the formulated nanoparticles were subjected to particle size (PS), zeta potential (ZP), polydispersity index (PI), drug entrapment efficiency (EE), Differential Scanning Calorimetry (DSC), Transmission Electron microscopy (TEM), release kinetics and in vitro release study was determined. Results: The results revealed that NLC dispersions had spherical shapes with an average size between 154.966±1.85 nm and 1078.4±103.02 nm. High entrapment efficiency was obtained with negatively charged zeta potential with PDI value ranging from 0.291±0.02 to 0.985±0.02. The release profiles of all formulations were characterized by a sustained release behavior over 24 h and the release rates increased as the amount of surfactant decreased. The release rate of TOL is expressed following the theoretical model by Higuchi. Conclusion: From this study, It can be concluded that NLCs are a good carrier for tolnaftate delivery


Author(s):  
Yasir Mohd ◽  
A Bhattacharyya ◽  
M Bajpai ◽  
M Yasir ◽  
M Asif

A floating type dosage form, gel beads of metformin hydrochloride was prepared by emulsification gelation technique. The gel bead was formed by mixing the polymer in water, oil phase and it was extruded in the calcium chloride solution as curing agent. The formulation parameters optimized were polymer ratio, concentration of oil, curing time on drug content, floating lag time, morphology, swelling of beads and release kinetics.The scanning electron photomicrographs revealed morphology of beads. The size of beads was measured. Entrapment efficiency of drug loaded beads was found to be over 90%. In vitro release of metformin hydrochloride from alginate–pectin beads into simulated gastric fluid at 37 ºC showed no significant burst effect. The cumulative release reached above 74.71 ± 4.15% in about 12h. The use of sodium alginate and combinations of sodium alginate with pectin were used to study the effect on the sustained release of the drug from the formed beads. It was found that sodium alginate was not sufficient to sustain the drug release at gastric pH (fed condition). Appropriate combination of alginate and pectin could provide the sustained release of drug. Floating gel beads formulation provides an alternative delivery for metformin in diabetes treatment.


2019 ◽  
Vol 9 (4) ◽  
pp. 571-577 ◽  
Author(s):  
Ali Darini ◽  
Touba Eslaminejad ◽  
Seyed Noroddin Nematollahi Mahani ◽  
Mehdi Ansari

Purpose: The main aim of the present study was to design, fabrication and physicochemicalcharacteristics of the magnetogel nanospheres as carriers for Cisplatin in the in vitro environment.Methods: Magnetic nanospheres were synthesized by using a chemical co-precipitation methodand coated by sodium alginate through double emulsion method. Then cisplatin was encapsulatedinto β-cyclodextrin -sodium alginate grafted magnetic nanospheres. The physicochemicalproperties of the sodium alginate grafted magnetic nanospheres were characterized by using FTIR,particle size analyzing, vibrating sample magnetometry, thermogravimetric and SEM analysis.Also the drug entrapment efficiency, content and in vitro release profile were investigated.Results: Size distribution results revealed that the particles size was distributed in the rangeof 50± nm. Also morphological properties showed that particles are separated and sphericalwith the grafted layers of the polymer. The release profile data were in the acceptable rangecompared to the blank (cisplatin solution).Conclusion: It could be concluded that the sodium alginate grafted magnetic nanospheres couldact as a slow and controlled release system to deliver cisplatin.<br />


Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Author(s):  
RISA AHDYANI ◽  
LARAS NOVITASARI ◽  
RONNY MARTIEN

Objective: The objectives of this study were to formulate and characterize nanoparticles gel of timolol maleate (TM) by ionic gelation method using chitosan (CS) and sodium alginate (SA). Methods: Optimization was carried out by factorial design using Design Expert®10.0.1 software to obtain the concentration of CS, SA, and calcium chloride (CaCl2) to produce the optimum formula of TM nanoparticles. The optimum formula was characterized for particle size, polydispersity index, entrapment efficiency, Zeta potential, and molecular structure. Hydroxy Propyl Methyl Cellulose (HPMC) K15 was incorporated into optimum formula to form nanoparticles gel of TM and carried out in vivo release study using the Franz Diffusion Cell. Results: TM nanoparticles was successfully prepared with concentration of CS, SA, and CaCl2 of 0.01 % (w/v), 0.1 % (w/v), and 0.25 % (w/v), respectively. The particle size, polydispersity index, entrapment efficiency, and Zeta potential were found to be 200.47±4.20 nm, 0.27±0.0154, 35.23±4.55 %, and-5.68±1.80 mV, respectively. The result of FTIR spectra indicated TM-loaded in the nanoparticles system. In vitro release profile of TM-loaded nanoparticles gel showed controlled release and the Korsmeyer-Peppas model was found to be the best fit for drug release kinetics. Conclusion: TM-loaded CS/SA nanoparticles gel was successfully prepared and could be considered as a promising candidate for controlled TM delivery of infantile hemangioma treatment.


Author(s):  
Preethi G. B. ◽  
Prashanth Kunal

<p><strong>Objective: </strong>The current work was attempted to formulate and evaluate a controlled-release matrix-type ocular inserts containing a combination of brimonidine tartrate and timolol maleate, with a view to sustain the drug release in the cul-de-sac of the eye.<strong></strong></p><p><strong>Methods: </strong>Initially, the infrared studies were done to determine the drug–polymer interactions. Sodium alginate-loaded ocuserts were prepared by solvent casting technique. Varying the concentrations of polymer—sodium alginate, plasticizer—glycerine, and cross-linking agent—calcium chloride by keeping the drug concentration constant, made a total of nine formulations. These formulations were evaluated for its appearance, drug content, weight uniformity, thickness uniformity, percentage moisture loss, percentage moisture absorption, and <em>in vitro </em>release profile of the ocuserts. Finally, accelerated stability studies and the release kinetics were performed on the optimised formulation.<strong></strong></p><p><strong>Results: </strong>It was perceived that polymer, plasticizer, and calcium chloride had a significant influence on the drug release. The data obtained from the formulations showed that formulation—F9 was the optimised formulation, which exhibited better drug release. The release data of the optimised formulation tested on the kinetic models revealed that it exhibited first-order release kinetics. <strong></strong></p><p><strong>Conclusion: </strong>It can be concluded that a natural bioadhesive hydrophilic polymer such as sodium alginate can be used as a film former to load water soluble and hydrophilic drugs like brimonidine tartrate and timolol maleate. Among all formulations, F9 with 400 mg sodium alginate, 2% calcium chloride and 60 mg glycerin were found to be the most suitable insert in terms of appearance, ease of handling, thickness, <em>in vitro</em> drug release and stability.</p>


2018 ◽  
Vol 8 (5) ◽  
pp. 465-474
Author(s):  
S PADMA PRIYA ◽  
AN Rajalakshmi ◽  
P Ilaveni

Objective: The objective of this research work is to develop and evaluate mucoadhesive microspheres of an anti-migraine drug for sustained release. Materials and Methods:  Mucoadhesive microspheres were prepared by emulsification method using Sodium alginate (SA), polyvinyl pyrrolidone (PVP) and Chitosan in the various drug-polymer ratios of 1:1, 1:2 and 1:3. Nine  formulations were formulated and  evaluated for  possible drug polymer interactions, percentage yield, micromeritic properties, particle size, drug content, drug entrapment efficiency, drug loading, swelling index, In-vitro wash off test, in vitro  drug release, surface morphology and release kinetics. Results: The results showed that no significant drug polymer interaction in FTIR studies. Among all the formulations SF3 containing sodium alginate showed 77.18% drug release in 6hrs. Conclusion: Amongst the developed mucoadhesive microspheres, SF3 formulation containing sodium alginate exhibited slow and sustained release in a controlled manner and it is a promising formulation for sustained release of Sumatriptan succinate. Keywords: Mucoadhesive microspheres, Sodium alginate, polyvinyl pyrrolidone, Chitosan, sustained release.


Sign in / Sign up

Export Citation Format

Share Document