scholarly journals FORMULATION AND CHARACTERIZATION OF TIMOLOL MALEATE-LOADED NANOPARTICLES GEL BY IONIC GELATION METHOD USING CHITOSAN AND SODIUM ALGINATE

Author(s):  
RISA AHDYANI ◽  
LARAS NOVITASARI ◽  
RONNY MARTIEN

Objective: The objectives of this study were to formulate and characterize nanoparticles gel of timolol maleate (TM) by ionic gelation method using chitosan (CS) and sodium alginate (SA). Methods: Optimization was carried out by factorial design using Design Expert®10.0.1 software to obtain the concentration of CS, SA, and calcium chloride (CaCl2) to produce the optimum formula of TM nanoparticles. The optimum formula was characterized for particle size, polydispersity index, entrapment efficiency, Zeta potential, and molecular structure. Hydroxy Propyl Methyl Cellulose (HPMC) K15 was incorporated into optimum formula to form nanoparticles gel of TM and carried out in vivo release study using the Franz Diffusion Cell. Results: TM nanoparticles was successfully prepared with concentration of CS, SA, and CaCl2 of 0.01 % (w/v), 0.1 % (w/v), and 0.25 % (w/v), respectively. The particle size, polydispersity index, entrapment efficiency, and Zeta potential were found to be 200.47±4.20 nm, 0.27±0.0154, 35.23±4.55 %, and-5.68±1.80 mV, respectively. The result of FTIR spectra indicated TM-loaded in the nanoparticles system. In vitro release profile of TM-loaded nanoparticles gel showed controlled release and the Korsmeyer-Peppas model was found to be the best fit for drug release kinetics. Conclusion: TM-loaded CS/SA nanoparticles gel was successfully prepared and could be considered as a promising candidate for controlled TM delivery of infantile hemangioma treatment.

Author(s):  
WILDAN KHAIRI MUHTADI ◽  
LARAS NOVITASARI ◽  
RONNY MARTIEN ◽  
RETNO DANARTI

Objective: This study aims to optimize the timolol maleate (TM) nanoparticle prepared by ionic gelation method using the factors of pectin (PC), calcium chloride (CC), and chitosan (CS) concentrations with the responses of entrapment efficiency, particle size, and polydispersity index using 23 factorial design. Methods: TM nanoparticle suspensions were obtained by mixing of PC (0,4-0,6% (w/v)), CC (0,2-0,4% (w/v)), and CS (0,01-0,02% (w/v)) with TM concentration of 0,02% w/v. Each mixture was then tested for entrapment efficiency, particle size, and polydispersity index. The test results were analyzed with 23 factorial design using Design-Expert software in order to determine the optimum formula. Results: The optimization study showed that all of the factors influenced the responses significantly (p<0.05) based on the analysis of variance (ANOVA) of the suggested models. The R2value and the adequate precision value of the three models were more than 0.7 and 4, respectively. The difference between Adjusted R-Squared and Predicted R-Squared value were less than 0.200. The optimum condition of TM nanoparticle was suggested at the desirability value of 0.839 with the concentration of PC, CC, and CS of 0,4% (w/v), 0,2% (w/v), and 0,01% (w/v), respectively. The entrapment efficiency, particle size, and polydispersity index of the optimum condition were 24.791±2.84%, 274.867±14.45 nm, and 0.634±0.066, respectively. Conclusion: The 23factorial design has been proved as the suitable method to determine the optimum condition that yields the good results of the entrapment efficiency, particle size, and polydispersity index of the TM-loaded nanoparticle prepared by ionic gelation method.


Author(s):  
Gurpreet Kandav ◽  
D.c. Bhatt ◽  
Deepak Kumar Jindal

Objective: The objective of the present investigation was to fabricate and characterize allopurinol loaded chitosan nanoparticles (A-CNPs) for sustained release of drug. Methods: The allopurinol loaded chitosan nanoparticles were successfully prepared by employing the ionotropic gelation method. Further, particle size (PS), polydispersity index (PDI), zeta potential (ZP), Differential Scanning Calorimetry (DSC), entrapment efficiency (EE), Transmission Electron Microscopy (TEM), in vitro drug release, X-Ray Diffraction (XRD) and Fourier transform infrared (FTIR) were used for evaluating formulated A-CNPs Results: A-CNPs was successfully prepared and the particle size, polydispersity index, ZP and entrapment efficiency were found to be 375.3±10.1 nm, 0.362±0.01 and 32.5±2.7 mV and 52.56±0.10% respectively. In vitro release profile of A-CNPs showed sustained release and Higuchi model was found to be best fit for drug release kinetics. FTIR study depicted no chemical interaction between pure drug allopurinol (AL) and other excipients. Conclusion: The sustained release formulation of allopurinol was successfully prepared using HMW chitosan and evaluated for different parameters.


2020 ◽  
Vol 17 (1) ◽  
pp. 172-183
Author(s):  
Nandanwadkar Shrikrishna Madhukar Hema ◽  
Mastiholimath Vinayak Shivamurthy ◽  
Pulija Karunakar

Introduction: Capsaicin (8-methy-N-vanillyl-6-nonenamide), a potential analgesic derived from Capsicum annuum (Chili peppers), widely used from ancient times for its pharmacological activities such as anti-inflammatory, anti-oxidant and analgesic and provides relief from migraine and diabetes. But for obvious reasons, capsaicin cannot be administered directly. The present work was designed with a focus to comply with mandatory requirement in various pharmacopeias to know the actual content of API present in final formulations. The formulation (TS3) consisting of 3% lipid, with 4:6 ratio of the polymer and solvent, was found to be the optimized formulation, which gave the best evaluation with regard to the particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies and highest drug entrapment efficiency (68.34±4.24)%. The prepared transferosome formulation was subjected to characterization by validated HP-TLC method consisting of N-Hexane: Tert- Iso-butyl-methyl ether in ratio (5:15) v/v. Linearity was performed in the range of 50-1500 ng/spot with LOD/LOQ 50 ng and 150 ng, with regression analysis (R) of 99.91%. Recovery analysis was performed at 3 different levels at 80, 100 and 120 with an average recovery of 106.97%, respectively. Till now, no analytical method has been reported, associated with the characterization of pharmaceutical nano-forms (Capsaicin), like transferosomes. Thus, the maiden validated HP-TLC method for concurrent analysis of capsaicin as API in nano-transferosome may be employed in process quality control of formulations containing the said API. Background: The irritability and adverse effects post application, leading to inflammation and neural pain at the site of administration of newly Capsaicin API and its chemical entities and marketed formulations are usually related to poor permeability, leading to drug complex reactions in the development phases or therapeutic failure along with the quantification of the same in blood plasma. However, advancement in drug formulations with the use of polymer: alcohol ratio and modernized analytical techniques for the quantification of Pharmaceutical APIs seems to be emerging and promising for overcoming pain and related inflammatory complications by formulating the APIs in Transferosome formulation with Validated HP-TLC technique being used as an effective economic and precise tool for quantitative analysis of APIs in their respective nano-forms. Objective: The study proposes a novel standardized method development and validation of pharmaceutical nanoforms with Capsaicin as API. Method: Capsaicin Transferosomes were formulated using Ultra probe sonication by utilizing different proportions of phospholipid 90G dissolved in a mixture of ethanol and propylene glycol. The formulation was subjected to Dynamic Light Scattering (DLS) technique for nano-particle analysis followed by characterization with respect to particle size, polydispersity index, zeta potential and entrapment efficiency. The morphological study of vesicles was determined using SEM and TEM. A Validated HP-TLC method for the identification and determination of Capsaicin in transferosomes formulation was performed as per the ICH guidelines. Results: The formulation gave the best evaluation for particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies (SEM & TEM) and highest drug entrapment efficiency (68.34±4.24)%. DSC thermograms and FTIR spectral patterns confirmed no physical interaction by polymers with API. The prepared formulation was then characterized using HP-TLC method. The best resolution was found in NHexane: Tert-Isobutyl methyl ether in a ratio of 5:15 v/v. The Rf was found to be 0.3±0.03. Linearity was performed in a range of 50-1500 ng/spot, with regression analysis (R) of 99.91% Further, recovery analysis was done at 3 different levels as 80, 100 and 120 with an average recovery of 106.97%. The LOD/LOQ was found to be 50 and 150 ng, respectively. Precision was carried out in which % RSD was found to be precise and accurate. Conclusion: The outcomes of the present study suggested that the proposed novel formulation analyzed by Validated planar chromatographic technique (HP-TLC) for Capsaicin quantification in nanoforms may be employed as a routine quality control method for the said API in various other formulations.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.


Author(s):  
S. PATHAK ◽  
S. P. VYAS ◽  
A. PANDEY

Objective: The objective of the present study was to develop, optimize, and evaluate Ibandronate-sodium loaded chitosan nanoparticles (Ib-CS NPs) to treat osteoporosis. Methods: NPs were prepared by the Ionic gelation method and optimized for various parameters such as the effect of concentration of chitosan, sodium tripolyphosphate (TPP), and pH effect on particle size polydispersity index (PDI), zeta potential, and entrapment efficiency. The prepared nanoparticles were characterized using particle size analyzer (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-Transform Infrared spectroscopy (FTIR).  Results: Formulated NPs were obtained in the average nano size in the range below 200 nm in TEM, SEM, and DLS studies. The particle size and encapsulation efficiency of the optimized formulation were 176.1 nm and 63.28%, respectively. The release profile of NPs was depended on the dissolution medium and followed the First-order release kinetics. Conclusion: Bisphosphonates are the most commonly prescribed drugs for treating osteoporosis in the US and many other countries, including India. Ibandronate is a widely used anti-osteoporosis drug, exhibits a strong inhibitory effect on bone resorption performed by osteoclast cells. Our results indicated that Ibandronate sodium-loaded chitosan nanoparticles provide an effective medication for the treatment of osteoporosis.


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


Author(s):  
MONOWAR HUSSAIN ◽  
ANUPAM SARMA ◽  
SHEIKH SOFIUR RAHMAN ◽  
ABDUL MATIN SIDDIQUE ◽  
TANUKU PAVANI EESWARI

Objective: Tuberculosis (TB) is an infectious bacterial disease caused by Mycobacterium tuberculosis which most commonly affects the lungs. TB has the highest mortality rate than any other infectious disease occurs worldwide. The main objective of the present investigation was to develop polymeric nanoparticles based drug delivery system to sustain the ethambutol (ETB) release by reducing the dose frequency. Methods: The Preformulation studies of drug ETB were done by physical characterization, melting point determination, and UV spectrophotometric analysis. The ETB loaded nanoparticles were prepared by double-emulsion (W/O/W) solvent evaporation/diffusion technique. The prepared polymeric nanoparticles were evaluated for particle size, polydispersity index, zeta potential, drug entrapment efficiency, drug loading, drug-polymer compatibility study, surface morphology, in vitro drug release, and release kinetics. Results: Based on the result obtained from the prepared formulations, F11 showed the best result and was selected as the optimized formulation. Optimized batch (F11) showed better entrapment efficiency (73.3%), good drug loading capacity (13.21%), optimum particle size (136.1 nm), and zeta potential (25.2 mV) with % cumulative drug release of 79.08% at the end of 24 h. Conclusion: These results attributed that developed polymeric nanoparticles could be effective in sustaining the ETB release over 24 h. Moreover, the developed nanoparticles could be an alternate method for ETB delivery with a prolonged drug release profile and a better therapeutic effect can be achieved for the treatment of tuberculosis.


Author(s):  
DIVYA ◽  
INDERBIR SINGH ◽  
UPENDRA NAGAICH

Objective: The aim of this study is to develop and in vitro evaluation of prepared fluconazole nanogel for seborrheic dermatitis Methods: Fluconazole nanogel was formulated to act against seborrheic dermatitis. The fluconazole nanoparticles were prepared by a simplified evaporation method and evaluated for particle size, entrapment efficiency, and percent in vitro drug release. The nanogel was also characterized based on parameters like particle size, percent entrapment efficiency, shape surface morphology, rheological properties, in vitro release R² = 0.9046, and release kinetics. Results: The nanoparticle with a combination of Eudragit RS and Tween 80 showed the best result with particle size in the range of 119.0 nm to 149.5 nm, with a cumulative percent drug release of 95 % up to 18 h. The formulated nanogel with optimum concentration of HPMC authenticate with particle size 149.50±0.5 with maximum drug release (92.13±0.32) %. Conclusion: Different percentages of polymers (ethyl-cellulose, eudragit, and tween 80) are used as variable components in the formulation of nanogel. The optimized batch showed good physical properties (flow index, spreadability, and viscosity) along with rapid drug release. Therefore, it can be concluded that nanogel containing fluconazole has potential application in topical delivery.


Author(s):  
Sandra Aulia Mardikasari

Mefenamic acid belongs to a class of the Non-steroidal Anti-Inflammatory drugs that work as an analgesic. But mefenamic acid can cause gastrointestinal disorders, has unpleasant odors and tastes and sensitive to the influence of light and temperature. Microencapsulation technology is a technique where the active substance is coated by a thin layer so that the active substance is protected from environmental influences. The aim of this research was to formulate and characterize mefenamic acid in the form of microencapsulation using ionic gelation methods. Preparation was done by comparing 3 variations of concentrations of sodium alginate polymers. Success parameters include the entrapment efficiency, particle shape, particle size distribution, and dissolution test. The results showed that the entrapment efficiency  respectively 98,69%,  96,38%  and 93,98%, with spherical shape, and particle size that fulfilled the microencapsulation size range of 1,268 μm, 1,343 μm and 1.386 μm and the release of the active ingredients in an acidic medium of pH 1.2 was 8.811 mg/L, 6.751 mg/L and 5.965 mg/L, also on a base medium of pH 7.4  was 79.908 mg/L, 63.394 mg/L and 40,312 mg/L. So that microencapsulation of mefenamic acid can be prepared with polymer chitosan and sodium alginate using the ionic gelation method.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 250
Author(s):  
Evren Gundogdu ◽  
Emine-Selin Demir ◽  
Meliha Ekinci ◽  
Emre Ozgenc ◽  
Derya Ilem-Ozdemir ◽  
...  

Imatinib (IMT) is a tyrosine kinase enzyme inhibitor and extensively used for the treatment of gastrointestinal stromal tumors (GISTs). A nanostructured lipid carrier system (NLCS) containing IMT was developed by using emulsification–sonication methods. The characterization of the developed formulation was performed in terms of its particle size, polydispersity index (PDI), zeta potential, entrapment efficiency, loading capacity, sterility, syringeability, stability, in vitro release kinetics with mathematical models, cellular uptake studies with flow cytometry, fluorescence microscopy and cytotoxicity for CRL-1739 cells. The particle size, PDI, loading capacity and zeta potential of selected NLCS (F16-IMT) were found to be 96.63 ± 1.87 nm, 0.27 ± 0.15, 96.49 ± 1.46% and −32.7 ± 2.48 mV, respectively. F16-IMT was found to be stable, thermodynamic, sterile and syringeable through an 18 gauze needle. The formulation revealed a Korsmeyer–Peppas drug release model of 53% at 8 h, above 90% of cell viability, 23.61 µM of IC50 and induction of apoptosis in CRL-1739 cell lines. In the future, F16-IMT can be employed to treat GISTs. A small amount of IMT loaded into the NLCSs will be better than IMT alone for therapy for GISTs. Consequently, F16-IMT could prove to be useful for effective GIST treatment.


Sign in / Sign up

Export Citation Format

Share Document