scholarly journals Predicting the bioactivity of 2-alkoxycarbonylallyl esters as potential antiproliferative agents against pancreatic cancer (MiaPaCa-2) cell lines: GFA-based QSAR and ELM-based models with molecular docking

Author(s):  
Oluwatoba Emmanuel Oyeneyin ◽  
Babatunde Samuel Obadawo ◽  
Adesoji Alani Olanrewaju ◽  
Taoreed Olakunle Owolabi ◽  
Fahidat Adedamola Gbadamosi ◽  
...  

Abstract Background The number of cancer-related deaths is on the increase, combating this deadly disease has proved difficult owing to resistance and some serious side effects associated with drugs used to combat it. Therefore, scientists continue to probe into the mechanism of action of cancer cells and designing novel drugs that could combat this disease more safely and effectively. Here, we developed a genetic function approximation model to predict the bioactivity of some 2-alkoxyecarbonyl esters and probed into the mode of interaction of these molecules with an epidermal growth factor receptor (3POZ) using the three-dimensional quantitative structure activity relationship (QSAR), extreme learning machine (ELM), and molecular docking techniques. Results The developed QSAR model with predicted (R2pred) of 0.756 showed that the model was fit to be validated parameter for a built model and also proved that the developed model could be used in practical situation, R2 for training set (0.9929) and test set (0.8397) confirmed that the model could successfully predict the activity of new compounds due to its correlation with the experimental activity, the models generated with ELM models showed improved prediction of the activity of the molecules. The lead compounds (22 and 23) had binding energies of −6.327 and −7.232 kcalmol−1 for 22 and 23 respectively and displayed better inhibition at the binding sites of 3POZ when compared with that of the standard drug, chlorambucil (−6.0 kcalmol−1). This could be attributed to the presence of double bonds and the α-ester groups. Conclusion The QSAR and ELM models had good prognostic ability and could be used to predict the bioactivity of novel anti-proliferative drugs.

2019 ◽  
Vol 7 (1) ◽  
pp. 9-24
Author(s):  
Akram La Kilo ◽  
La Ode Aman ◽  
Ismail Sabihi ◽  
Jafar La Kilo

This Research aims to study Quantitative Structure-Activity Relationship (QSAR) of pyrazoline analogues, designing the new potential compounds as antiamoebic and study the interactions between the new compunds and the drugs target by molecular docking approach. This research was a theoritical research using computational chemistry method. The object of research was 21 novel of 1-N-substituted pyrazoline analogues of thiosemicarbazones with their antiamoebic biological activity. The data of research was obtained from quantum chemistry calculation and statistically analysis using Multiple Linear Regression (MLR). The resulting QSAR equation was Log IC50 = 0.869 + (0.081 x TPSA) + (0.018 x HF) + (0.527 x E-HOMO) + (3.378 x E-LUMO) + (-16.938 x Glob) + (0.234 x LogP), with statistic parameters of n = 21; R2 = 0.933; SEE = 0.14558; FHitung/FTabel = 8.607; PRESS = 0.491. This equation was used as a basic for designing and predicting the new antiamoebic compounds of pyrazoline analogues. The design of new compound of two lead compounds with the Topliss resulted 5 of 18 new compounds having theoretical better activity than the lead compound. Molecular docking study indicated that all of the best compounds have ability to bind to drug target macromolecule.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Hadiza Abdulrahman Lawal ◽  
Adamu Uzairu ◽  
Sani Uba

Abstract Background Cancer of the breast is known to be among the top spreading diseases on the globe. Triple-negative breast cancer is painstaking the most destructive type of mammary tumor because it spreads faster to other parts of the body, with high chances of early relapse and mortality. This research would aim at utilizing computational methods like quantitative structure–activity relationship (QSAR), performing molecular docking studies and again to further design new effective molecules using the QSAR model parameters and to analyze the pharmacokinetics “drug-likeliness” properties of the new compounds before they could proceed to pre-clinical trials. Results The QSAR model of the derivatives was highly robust as it also conforms to the least minimum requirement for QSAR model from the statistical assessments of (R2) = 0.6715, (R2adj) = 0.61920, (Q2) = 0.5460 and (R2pred) of 0.5304, and the model parameters (AATS6i and VR1_Dze) were used in designing new derivative compounds with higher potency. The molecular docking studies between the derivative compounds and Maternal Embryonic Leucine Zipper Kinase (MELK) protein target revealed that ligand 2, 9 and 17 had the highest binding affinities of − 9.3, − 9.3 and − 8.9 kcal/mol which was found to be higher than the standard drug adriamycin with − 7.8 kcal/mol. The pharmacokinetics analysis carried out on the newly designed compounds revealed that all the compounds passed the drug-likeness test and also the Lipinski rule of five. Conclusions The results obtained from the QSAR mathematical model of parthenolide derivatives were used in designing new derivatives compounds that were more effective and potent. The molecular docking result of parthenolide derivatives showed that compounds 2, 9 and 17 had higher docking scores than the standard drug adriamycin. The compounds would serve as the most promising inhibitors (MELK). Furthermore, the pharmacokinetics analysis carried out on the newly designed compounds revealed that all the compounds passed the drug-likeness test (ADME and other physicochemical properties) and they also adhered to the Lipinski rule of five. This gives a great breakthrough in medicine in finding the cure to triple-negative breast cancer (MBA-MD-231 cell line).


2021 ◽  
Vol 14 (4) ◽  
pp. 357
Author(s):  
Magdi E. A. Zaki ◽  
Sami A. Al-Hussain ◽  
Vijay H. Masand ◽  
Siddhartha Akasapu ◽  
Sumit O. Bajaj ◽  
...  

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure−Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA–MLR (Genetic Algorithm–Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole–indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.


Author(s):  
Jelena Bošković ◽  
Dušan Ružić ◽  
Olivera Čudina ◽  
Katarina Nikolic ◽  
Vladimir Dobričić

Background: Inflammation is common pathogenesis of many diseases progression, such as malignancy, cardiovascular and rheumatic diseases. The inhibition of the synthesis of inflammatory mediators by modulation of cyclooxygenase (COX) and lipoxygenase (LOX) pathways provides a challenging strategy for the development of more effective drugs. Objective: The aim of this study was to design dual COX-2 and 5-LOX inhibitors with iron-chelating properties using a combination of ligand-based (three-dimensional quantitative structure-activity relationship (3D-QSAR)) and structure-based (molecular docking) methods. Methods: The 3D-QSAR analysis was applied on a literature dataset consisting of 28 dual COX-2 and 5-LOX inhibitors in Pentacle software. The quality of developed COX-2 and 5-LOX 3D-QSAR models were evaluated by internal and external validation methods. The molecular docking analysis was performed in GOLD software, while selected ADMET properties were predicted in ADMET predictor software. Results: According to the molecular docking studies, the class of sulfohydroxamic acid analogues, previously designed by 3D-QSAR, was clustered as potential dual COX-2 and 5-LOX inhibitors with iron-chelating properties. Based on the 3D-QSAR and molecular docking, 1j, 1g, and 1l were selected as the most promising dual COX-2 and 5-LOX inhibitors. According to the in silico ADMET predictions, all compounds had an ADMET_Risk score less than 7 and a CYP_Risk score lower than 2.5. Designed compounds were not estimated as hERG inhibitors, and 1j had improved intrinsic solubility (8.704) in comparison to the dataset compounds (0.411-7.946). Conclusion: By combining 3D-QSAR and molecular docking, three compounds (1j, 1g, and 1l) are selected as the most promising designed dual COX-2 and 5-LOX inhibitors, for which good activity, as well as favourable ADMET properties and toxicity, are expected.


2021 ◽  
Vol 16 (10) ◽  
pp. 50-58
Author(s):  
Ali Qusay Khalid ◽  
Vasudeva Rao Avupati ◽  
Husniza Hussain ◽  
Tabarek Najeeb Zaidan

Dengue fever is a viral infection spread by the female mosquito Aedes aegypti. It is a virus spread by mosquitoes found all over the tropics with risk levels varying depending on rainfall, relative humidity, temperature and urbanization. There are no specific medications that can be used to treat the condition. The development of possible bioactive ligands to combat Dengue fever before it becomes a pandemic is a global priority. Few studies on building three-dimensional quantitative structure-activity relationship (3D QSAR) models for anti-dengue agents have been reported. Thus, we aimed at building a statistically validated atom-based 3D-QSAR model using bioactive ligands reported to possess significant anti-dengue properties. In this study, the Schrodinger PhaseTM atom-based 3D QSAR model was developed and was validated using known anti-dengue properties as ligand data. This model was also tested to see if there was a link between structural characteristics and anti-dengue activity of a series of 3-acyl-indole derivatives. The established 3D QSAR model has strong predictive capacity and is statistically significant [Model: R2 Training Set = 0.93, Q2 (R2 Test Set) = 0.72]. In addition, the pharmacophore characteristics essential for the reported anti-dengue properties were explored using combined effects contour maps (coloured contour maps: blue: positive potential and red: negative potential) of the model. In the pathway of anti-dengue drug development, the model could be included as a virtual screening method to predict novel hits.


2021 ◽  
Vol 22 (15) ◽  
pp. 8352
Author(s):  
Magdi E. A. Zaki ◽  
Sami A. Al-Hussain ◽  
Vijay H. Masand ◽  
Manoj K. Sabnani ◽  
Abdul Samad

Thrombosis is a life-threatening disease with a high mortality rate in many countries. Even though anti-thrombotic drugs are available, their serious side effects compel the search for safer drugs. In search of a safer anti-thrombotic drug, Quantitative Structure-Activity Relationship (QSAR) could be useful to identify crucial pharmacophoric features. The present work is based on a larger data set comprising 1121 diverse compounds to develop a QSAR model having a balance of acceptable predictive ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR). The developed six parametric model fulfils the recommended values for internal and external validation along with Y-randomization parameters such as R2tr = 0.831, Q2LMO = 0.828, R2ex = 0.783. The present analysis reveals that anti-thrombotic activity is found to be correlated with concealed structural traits such as positively charged ring carbon atoms, specific combination of aromatic Nitrogen and sp2-hybridized carbon atoms, etc. Thus, the model captured reported as well as novel pharmacophoric features. The results of QSAR analysis are further vindicated by reported crystal structures of compounds with factor Xa. The analysis led to the identification of useful novel pharmacophoric features, which could be used for future optimization of lead compounds.


2015 ◽  
Vol 80 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Zhila Avval ◽  
Eslam Pourbashir ◽  
Mohammad Ganjali ◽  
Parviz Norouzi

This paper deals with developing a linear quantitative structure-activity relationship (QSAR) model for predicting the RSK inhibition activity of some new compounds. A dataset consisting of 62 pyrazino [1,2-?] indole, diazepino [1,2-?] indole, and imidazole derivatives with known inhibitory activities was used. Multiple linear regressions (MLR) technique combined with the stepwise (SW) and the genetic algorithm (GA) methods as variable selection tools was employed. For more checking stability, robustness and predictability of the proposed models, internal and external validation techniques were used. Comparison of the results obtained, indicate that the GA-MLR model is superior to the SW-MLR model and that it isapplicable for designing novel RSK inhibitors.


2012 ◽  
Vol 62 (3) ◽  
pp. 287-304 ◽  
Author(s):  
Shravan Kumar Gunda ◽  
Rohith Kumar Anugolu ◽  
Sri Ramya Tata ◽  
Saikh Mahmood

= Three-dimensional quantitative structure activity relationship (3D QSAR) analysis was carried out on a et of 56 N,N’-diarylsquaramides, N,N’-diarylureas and diaminocyclobutenediones in order to understand their antagonistic activities against CXCR2. The studies included comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Models with good predictive abilities were generated with CoMFA q2 0.709, r2 (non-cross-validated square of correlation coefficient) = 0.951, F value = 139.903, r2 bs = 0.978 with five components, standard error of estimate = 0.144 and the CoMSIA q2 = 0.592, r2 = 0.955, F value = 122.399, r2 bs = 0.973 with six components, standard error of estimate = 0.141. In addition, a homology model of CXCR2 was used for docking based alignment of the compounds. The most active compound then served as a template for alignment of the remaining structures. Further, mapping of contours onto the active site validated each other in terms of residues involved with reference to the respective contours. This integrated molecular docking based alignment followed by 3D QSAR studies provided a further insight to support the structure-based design of CXCR2 antagonistic agents with improved activity profiles. Furthermore, in silico screening was adapted to the QSAR model in order to predict the structures of new, potentially active compounds.


Sign in / Sign up

Export Citation Format

Share Document