GRAVITY AND MAGNETIC INVESTIGATIONS AT THE GRAND SALINE SALT DOME, VAN ZANDT CO., TEXAS

Geophysics ◽  
1945 ◽  
Vol 10 (3) ◽  
pp. 376-393 ◽  
Author(s):  
Jack W. Peters ◽  
Albert F. Dugan

During May, 1944, detailed gravity and magnetic surveys were made at the Grand Saline Salt Dome to secure additional information on the physical properties of this typical East Texas salt dome. The results of the surface gravity and magnetic surveys, and the subsurface gravity survey in the Morton Salt Mine are illustrated and discussed. Densities and the available subsurface data were compiled and were utilized in a quantitative evaluation of the observed gravity data. The theoretical mass distribution which was determined by this quantitative evaluation is not intended to represent the unique solution of the geophysical and geological data; instead, it is offered as a possible solution based on relatively simple assumptions.

Geophysics ◽  
2021 ◽  
pp. 1-39
Author(s):  
Mahak Singh Chauhan ◽  
Ivano Pierri ◽  
Mrinal K. Sen ◽  
Maurizio FEDI

We use the very fast simulated annealing algorithm to invert the scaling function along selected ridges, lying in a vertical section formed by upward continuing gravity data to a set of altitudes. The scaling function is formed by the ratio of the field derivative by the field itself and it is evaluated along the lines formed by the zeroes of the horizontal field derivative at a set of altitudes. We also use the same algorithm to invert gravity anomalies only at the measurement altitude. Our goal is analyzing the different models obtained through the two different inversions and evaluating the relative uncertainties. One main difference is that the scaling function inversion is independent on density and the unknowns are the geometrical parameters of the source. The gravity data are instead inverted for the source geometry and the density simultaneously. A priori information used for both the inversions is that the source has a known depth to the top. We examine the results over the synthetic examples of a salt dome structure generated by Talwani’s approach and real gravity datasets over the Mors salt dome and the Decorah (USA) basin. For all these cases, the scaling function inversion yielded models with a better sensitivity to specific features of the sources, such as the tilt of the body, and reduced uncertainty. We finally analyzed the density, which is one of the unknowns for the gravity inversion and it is estimated from the geometric model for the scaling function inversion. The histograms over the density estimated at many iterations show a very concentrated distribution for the scaling function, while the density contrast retrieved by the gravity inversion, according to the fundamental ambiguity density/volume, is widely dispersed, this making difficult to assess its best estimate.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1514-1526 ◽  
Author(s):  
Alvin K. Benson ◽  
Andrew R. Floyd

Gravity and magnetic data were collected in the Mosida Hills, Utah County, Utah, at over 1100 stations covering an area of approximately 58 km2 (150 mi2) in order to help define the subsurface geology and assess potential geological hazards for urban planning in an area where the population is rapidly increasing. In addition, potential hydrocarbon traps and mineral ore bodies may be associated with some of the interpreted subsurface structures. Standard processing techniques were applied to the data to remove known variations unrelated to the geology of the area. The residual data were used to generate gravity and magnetic contour maps, isometric projections, profiles, and subsurface models. Ambiguities in the geological models were reduced by (1) incorporating data from previous geophysical surveys, surface mapping, and aeromagnetic data, (2) integrating the gravity and magnetic data from our survey, and (3) correlating the modeled cross sections. Gravity highs and coincident magnetic highs delineate mafic lava flows, gravity lows and magnetic highs reflect tuffs, and gravity highs and magnetic lows spatially correlate with carbonates. These correlations help identify the subsurface geology and lead to new insights about the formation of the associated valleys. At least eight new faults (or fault segments) were identified from the gravity data, whereas the magnetic data indicate the existence of at least three concealed and/or poorly exposed igneous bodies, as well as a large ash‐flow tuff. The presence of low‐angle faults suggests that folding or downwarping, in addition to faulting, played a role in the formation of the valleys in the Mosida Hills area. The interpreted location and nature of concealed faults and volcanic flows in the Mosida Hills area are being used by policy makers to help develop mitigation procedures to protect life and property.


2021 ◽  
Vol 4 (2) ◽  
pp. 117-125
Author(s):  
Hidayat Syah Putra ◽  
Rifqan Rifqan ◽  
Akmal Muhni ◽  
Dewi Sartika

The shoreface deposits study commonly conducted to characterize the reservoir's physical properties carried out by surface geological data. The physical properties focused on pore space conditions controlled by sedimentary process and tectonic settings in Seulimum Formation. The method used as descriptive analysis and previous study of the area interested. The geological data showed shoreface environmental deposits that can be divided into two types of environmental deposits they are middle shoreface and upper shoreface deposits. These environmental deposits are proven by some features such as bioturbation with an abundant presence of Ophiomorpha in the second stop sites (total 5 stop sites). The first stop site indicates two kinds of environmental deposits by coarse sandstones and mudstones dominated facies presence in the specific beds. Mudclast and hummocky structures also present in the field observation that concludes complex environmental deposits during the quaternary period the formation. Based on characteristics of facies could suggest those sediment products deposited on shallow marine. These wave-dominated coasts generally have an excellent reservoir potential effect on shoreface sands that are laterally continuous and were orientated parallel to the shoreline.


Author(s):  
Richard M. Carruthers ◽  
John D. Cornwell

Lateral variations in the density and magnetization of the rocks within the crust give rise to "anomalies" in the Earth's gravity and magnetic fields. These anomalies can be measured and interpreted in terms of the geology both in a qualitative sense, by mapping out trends and changes in anomaly style, and quantitatively, by creating models of the subsurface which reproduce the observed fields. Such interpretations are generally less definitive in themselves than the results from seismic surveys (see chapter 12), but the data are widely available and can provide information in areas where other methods are ineffective or have not been applied. As the different geophysical techniques respond to specific rock properties such as density, magnetization, and acoustic velocity, the results are complementary, and a fully integrated approach to data collection and interpretation is generally more effective than the sum of its parts assessed on an individual basis. Gravity and magnetic data have been acquired, at least to a reconnaissance scale, over most of the world. In particular, the release into the public domain of satellite altimetry information (combined with improved methods of data processing) means that there is gravity coverage to a similar standard for most of the offshore region to within about 50 km of the coast. Magnetic anomalies recorded from satellites provide global coverage, but the high altitude of the observations means that only large-scale features extending over many 10s of kilometers are delineated. Reconnaissance aeromagnetic surveys with flight lines 10-20 km apart provide a lateral anomaly resolution similar to that of the satellite gravity data. Oceanographic surveys undertaken by a variety of academic and research institutions are another valuable source of data in remote regions offshore which supplement and extend the more detailed coverage obtained over the continental shelves, for example, by oil companies in areas of hydrocarbon interest. Surveys over land vary widely in terms of acquisition parameters and quality, but some form of national compilation is available from many countries. A number of possible applications of the potential field (i.e., gravity and magnetic) data follow from the terms set out by UNCLOS. Paragraph 4(b) of article 76 states, "In the absence of evidence to the contrary, the foot of the continental slope is to be determined as the point of maximum change in the gradient at its base" (italics added).


2005 ◽  
Vol 17 (2) ◽  
pp. 213-224 ◽  
Author(s):  
A. MUÑOZ-MARTÍN ◽  
M. CATALÁN ◽  
J. MARTÍN-DÁVILA ◽  
A. CARBÓ

Deception Island is a young, active volcano located in the south-western part of Bransfield Strait, between the Antarctic Peninsula and the South Shetland archipelago. New gravity and magnetic data, from a marine geophysical cruise (DECVOL-99), were analysed. Forty-eight survey lines were processed and mapped around Deception Island to obtain Bouguer and magnetic anomaly maps. These maps show well- defined groups of gravity and magnetic anomalies, as well as their gradients. To constrain the upper crustal structure, we have performed 2+1/2D forward modelling on three profiles perpendicular to the main anomalies of the area, and taking into account previously published seismic information. From the gravity and magnetic models, two types of crust were identified. These were interpreted as continental crust (located north of Deception Island) and more basic crust (south of Deception Island). The transition between these crustal types is evident in the Bouguer anomaly map as a high gradient area trending NE–SW. Both magnetic and gravity data show a wide minimum at the eastern part of Deception Island, which suggests a very low bulk susceptibility and low density intrusive body. With historical recorded eruptions and thermal and fumarolic fields, we interpret this anomaly as a partially melted intrusive body. Its top has been estimated to be at 1.7 km depth using Euler deconvolution techniques.


AAPG Bulletin ◽  
1993 ◽  
Vol 77 ◽  
Author(s):  
TURNER, JAMES R., Fina Oil and Chem

Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1354-1360 ◽  
Author(s):  
A. Guillen ◽  
V. Menichetti

The nonuniqueness of gravity or magnetic data inversion is well known. In order to remove ambiguity, some authors have sought solutions minimizing a functional describing geometrical or physical properties. Last and Kubik (1983), in particular, developed a method explaining the observed anomaly by structures of minimum volume. In this method the domain where anomalous sources are searched is divided into elementary prisms of a constant density or susceptibility contrast. Each elementary contrast is allowed to vary individually. Thus a contrast distribution is computed. The search for this kind of solution leads in general to geologically more appropriate bodies, but exceptions do occur. In this paper, the technique is broadened to include the search for solutions minimizing the moment of inertia with respect to the center of gravity or with respect to a given dip line passing through it. The resulting structures are both deeper and more compact, precisely as is required in specific cases. Theoretical and actual examples illustrate this flexible inversion technique.


Geophysics ◽  
1991 ◽  
Vol 56 (7) ◽  
pp. 983-991 ◽  
Author(s):  
A. Bellott ◽  
J. Corpel ◽  
R. Millon

The Hajar prospect is located in the Guemassa Paleozoic massif, about 30 km southwest of Marrakesh, Morocco. Visean volcano‐sedimentary formations are present in this massif and in the Jebilets massif north of Marrakesh. In these formations, syngenetic massive sulfides occur, and one of these bodies, Kettara in the Jebilets, has been partially mined. Using the Kettara magnetic anomaly to establish the magnetization parameters, we performed a preliminary interpretation of the Hajar anomaly. Our 2.5-D model determined the depth of the structure to be about 150 to 200 m below the surface. This relatively shallow depth was a decisive factor in siting a reconnaissance drillhole, which encountered massive sulfides between 158 and 276 m. After completing a systematic gravity and magnetic survey, 3-D magnetic modeling was attempted, constrained by the results of four drillholes. Now that more than 20 holes have been drilled, this magnetic model still conforms to the newly revealed geology. Unfortunately, it was not possible to extract useful information concerning the orebody from modeling and interpreting the gravity data. The gravity response is masked by disturbances such as faults and variations in depth and nature of the Visean basement. The discovery of the Hajar deposit shows that magnetic investigations, improved by pertinent modeling techniques, can be used at various stages of exploration to help recognize and define massive sulfide bodies.


Geophysics ◽  
1942 ◽  
Vol 7 (4) ◽  
pp. 345-353 ◽  
Author(s):  
D. C. Skeels

Although there is no unique interpretation of a given set of gravity data, there are many cases in which quantitative interpretation is decidedly worthwhile. This is especially true in cases where the gravity data are supplemented by a certain amount of geological data, or where the gravity anomaly is of such a shape that the range of possible solutions can be rather closely limited. Three examples are given of interpretations of actual data.


1970 ◽  
Vol 7 (3) ◽  
pp. 858-868 ◽  
Author(s):  
R. H. Wallis

The striking 'fit' of aeromagnetic and gravity data from the Precambrian of northwest Saskatchewan, combined with known and nearby analogous, geological relationships, suggests the presence of a northeast-trending belt, 250 × 20 miles (400 × 30 km), of early Proterozoic (?) metasedimentary rocks, probably magnetite-bearing meta-arkoses. This structural–sedimentary unit might have economic possibilities analogous to other northeast-striking, Precambrian, lower Proterozoic (?), metasedimentary belts of northern Saskatchewan, the Virgin River Belt, and the Wollaston Trend.


Sign in / Sign up

Export Citation Format

Share Document