SEISMIC DATA COMPRESSION METHODS

Geophysics ◽  
1974 ◽  
Vol 39 (4) ◽  
pp. 499-525 ◽  
Author(s):  
Lawrence C. Wood

This paper discusses two ways of compressing seismic data prior to long‐distance transmission for display. A Walsh transform technique and an analogous time‐domain method eliminate redundant seismic information allowing data sets to be compressed with little visual degradation. The basic approach consists of using an average 3-bit code to describe data in such a way as to minimize information loss; the method also uses the Walsh transform to achieve further compaction through sequency bandlimiting. A second technique is entirely a time‐domain operation and does not use transforms. The Walsh method, however, produces larger compression ratios than the time technique before serious image degradation occurs. Both schemes have six basic parts: bandlimiting, quantization, encoding, decoding, interpolation, and band‐pass filtering; they differ only in band limiting and interpolation. Band limiting sequencies in the Walsh domain is very similar to, but not the same as, alias filtering and resampling in time. Reducing Walsh bandwidths by some power of two has a time‐domain implementation consisting of an averaging procedure with subsequent resampling, while the inverse Walsh transform step can be viewed as a means of interpolating in the time domain. The convergence properties of three Rademacher derived transforms—Hadamard, Paley, and Walsh—are studied with regard to exploration seismic data. Hadamard energy has been found to be uniformly distributed over its entire spectrum, whereas Walsh and Paley transforms concentrate about 80 percent of the total energy into a major lobe occupying about 15 percent of the total bandwidth (2 msec sampling). Smaller minor lobes containing the remaining 20 percent are discarded while bandlimiting. The major lobe energy suffices for many seismic applications such as VA/VD plot displays. Optimum quantization and encoding of major lobe energy results in an overall 28:1 compression factor for 12 bit data sampled every 2 msec. Analogous time domain compression, on the other hand, only achieves a 16:1 reduction because of the power of two restriction imposed by the resampling and averaging process.

2020 ◽  
Vol 8 (1) ◽  
pp. T141-T149
Author(s):  
Ritesh Kumar Sharma ◽  
Satinder Chopra ◽  
Larry R. Lines

Multicomponent seismic data offer several advantages for characterizing reservoirs with the use of the vertical component (PP) and mode-converted (PS) data. Joint impedance inversion inverts both of these data sets simultaneously; hence, it is considered superior to simultaneous impedance inversion. However, the success of joint impedance inversion depends on how accurately the PS data are mapped on the PP time domain. Normally, this is attempted by performing well-to-seismic ties for PP and PS data sets and matching different horizons picked on PP and PS data. Although it seems to be a straightforward approach, there are a few issues associated with it. One of them is the lower resolution of the PS data compared with the PP data that presents difficulties in the correlation of the equivalent reflection events on both the data sets. Even after a few consistent horizons get tracked, the horizon matching process introduces some artifacts on the PS data when mapped into PP time. We have evaluated such challenges using a data set from the Western Canadian Sedimentary Basin and then develop a novel workflow for addressing them. The importance of our workflow was determined by comparing data examples generated with and without its adoption.


Geophysics ◽  
1994 ◽  
Vol 59 (5) ◽  
pp. 712-721 ◽  
Author(s):  
Umberto Spagnolini

The spectral analysis of magnetotelluric (MT) data for impedance tensor estimation requires the stationarity of measured magnetic (H) and electric (E) fields. However, it is well known that noise biases timedomain tensor estimates obtained via an iterative search by a descent algorithm to determine the least‐mean‐square residual between measured and estimated E data obtained from H data. To limit the noise that slows down, or even prevents convergence, the steepest descent step size is based upon the statistics of the residual (Bayes’ estimation). With respect to uncorrelated noise, the time‐domain technique is more robust than frequency‐domain techniques. Furthermore, the technique requires only short‐time stationarity. The time‐domain technique is applied to data sets (Lincoln Line sites) from the EMSLAB Juan de Fuca project (Electromagnetic Sounding of the Lithosphere and Asthenosphere Beneath the Juan de Fuca Plate), as well as to data from a southern Italian site. The results of EMSLAB data analysis are comparable to those obtained by robust remote reference processing where larger data sets were used.


Geophysics ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. V245-V254
Author(s):  
Yangkang Chen

Time-frequency analysis is a fundamental approach to many seismic problems. Time-frequency decomposition transforms input seismic data from the time domain to the time-frequency domain, offering a new dimension to probe the hidden information inside the data. Considering the nonstationary nature of seismic data, time-frequency spectra can be obtained by applying a local time-frequency transform (LTFT) method that matches the input data by fitting the Fourier basis with nonstationary Fourier coefficients in the shaping regularization framework. The key part of LTFT is the temporal smoother with a fixed smoothing radius that guarantees the stability of the nonstationary least-squares fitting. We have developed a new LTFT method to handle the nonstationarity in all time, frequency, and space ( x and y) directions of the input seismic data by extending fixed-radius temporal smoothing to nonstationary smoothing with a variable radius in all physical dimensions. The resulting time-frequency transform is referred to as the nonstationary LTFT method, which could significantly increase the resolution and antinoise ability of time-frequency transformation. There are two meanings of nonstationarity, i.e., coping with the nonstationarity in the data by LTFT and dealing with the nonstationarity in the model by nonstationary smoothing. We evaluate the performance of our nonstationary LTFT method in several standard seismic applications via synthetic and field data sets, e.g., arrival picking, quality factor estimation, low-frequency shadow detection, channel detection, and multicomponent data registration, and we benchmark the results with the traditional stationary LTFT method.


2017 ◽  
Vol 5 (1) ◽  
pp. T1-T9 ◽  
Author(s):  
Rui Zhang ◽  
Kui Zhang ◽  
Jude E. Alekhue

More and more seismic surveys produce 3D seismic images in the depth domain by using prestack depth migration methods, which can present a direct subsurface structure in the depth domain rather than in the time domain. This leads to the increasing need for applications of seismic inversion on the depth-imaged seismic data for reservoir characterization. To address this issue, we have developed a depth-domain seismic inversion method by using the compressed sensing technique with output of reflectivity and band-limited impedance without conversion to the time domain. The formulations of the seismic inversion in the depth domain are similar to time-domain methods, but they implement all the elements in depth domain, for example, a depth-domain seismic well tie. The developed method was first tested on synthetic data, showing great improvement of the resolution on inverted reflectivity. We later applied the method on a depth-migrated field data with well-log data validated, showing a great fit between them and also improved resolution on the inversion results, which demonstrates the feasibility and reliability of the proposed method on depth-domain seismic data.


2015 ◽  
Vol 11 (21) ◽  
pp. 221-238 ◽  
Author(s):  
Carlos Fajardo ◽  
Oscar Mauricio Reyes ◽  
Ana Ramirez

Different seismic data compression algorithms have been developed in or-der to make the storage more efficient, and to reduce both the transmission time and cost. In general, those algorithms have three stages: transforma-tion, quantization and coding. The Wavelet transform is highly used tocompress seismic data, due to the capabilities of the Wavelets on representing geophysical events in seismic data. We selected the lifting scheme to implement the Wavelet transform because it reduces both computational and storage resources. This work aims to determine how the transforma-tion and the coding stages affect the data compression ratio.Several 2Dlifting-based algorithms were implemented to compress three different seis-mic data sets. Experimental results obtained for different filter type, filterlength, number of decomposition levels and coding scheme, are presented in this work.


2017 ◽  
Vol 17 (1) ◽  
pp. 25
Author(s):  
Fitri Rizqi Azizah ◽  
Puguh Hiskiawan ◽  
Sri Hartanto

Oil and natural gas as a fossil fuel that is essential for human civilization, and included in nonrenewable energy, making this energy source is not easy for updated availability. So that it is necessary for exploration and exploitation reliable implementation. Seismic exploration becomes the method most widely applied in the oil, in particular reflection seismic exploration. Data wells (depth domain) and seismic data (time domain) of reflection seismic survey provides information wellbore within the timescale. As for the good interpretation needed information about the state of the earth and is able to accurately describe the actual situation (scale depth). Conversion time domain into the depth domain into things that need to be done in generating qualified exploration map. Method of time-depth curve to be the method most preferred by the geophysical interpreter, in addition to a fairly short turnaround times, also do not require a large budget. Through data information check-shot consisting of the well data and seismic data, which is then exchanged plotted, forming a curve time-depth curve, has been able to produce a map domain depth fairly reliable based on the validation value obtained in the range of 54 - 176m difference compared to the time domain maps previously generated.Keywords: Energy nonrenewable, survei seismik, peta domain waktu, peta domain kedalaman, time-depth curve


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. K103-K109 ◽  
Author(s):  
Qingyun Di ◽  
Meigen Zhang ◽  
Maioyue Wang

Many seismic data processing and inversion techniques have been applied to ground-penetrating radar (GPR) data without including the wave field attenuation caused by conductive ground. Neglecting this attenuation often reduces inversion resolution. This paper introduces a GPR inversion technique that accounts for the effects of attenuation. The inversion is formulated in the time domain with the synthetic GPR waveforms calculated by a finite-element method (FEM). The Jacobian matrix can be computed efficiently with the same FEM forward modeling procedure. Synthetic data tests show that the inversion can generate high-resolution subsurface velocity profiles even with data containing strong random noise. The inversion can resolve small objects not readily visible in the waveforms. Further, the inversion yields a dielectric constant that can help to determine the types of material filling underground cavities.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Dileep Kumar ◽  
Dezhan Tu ◽  
Naifu Zhu ◽  
Dibo Hou ◽  
Hongjian Zhang

Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors. The device will travel by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and classification capability of artificial neural networks. This study validates that the time domain is not evident to the complete features regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the features of the signal with leak noise and background noise, and by neural network implementation, the method improves the classification performance of extracted features.


Sign in / Sign up

Export Citation Format

Share Document