Nonstationary local time-frequency transform

Geophysics ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. V245-V254
Author(s):  
Yangkang Chen

Time-frequency analysis is a fundamental approach to many seismic problems. Time-frequency decomposition transforms input seismic data from the time domain to the time-frequency domain, offering a new dimension to probe the hidden information inside the data. Considering the nonstationary nature of seismic data, time-frequency spectra can be obtained by applying a local time-frequency transform (LTFT) method that matches the input data by fitting the Fourier basis with nonstationary Fourier coefficients in the shaping regularization framework. The key part of LTFT is the temporal smoother with a fixed smoothing radius that guarantees the stability of the nonstationary least-squares fitting. We have developed a new LTFT method to handle the nonstationarity in all time, frequency, and space ( x and y) directions of the input seismic data by extending fixed-radius temporal smoothing to nonstationary smoothing with a variable radius in all physical dimensions. The resulting time-frequency transform is referred to as the nonstationary LTFT method, which could significantly increase the resolution and antinoise ability of time-frequency transformation. There are two meanings of nonstationarity, i.e., coping with the nonstationarity in the data by LTFT and dealing with the nonstationarity in the model by nonstationary smoothing. We evaluate the performance of our nonstationary LTFT method in several standard seismic applications via synthetic and field data sets, e.g., arrival picking, quality factor estimation, low-frequency shadow detection, channel detection, and multicomponent data registration, and we benchmark the results with the traditional stationary LTFT method.

2019 ◽  
Vol 7 (3) ◽  
pp. T701-T711
Author(s):  
Jianhu Gao ◽  
Bingyang Liu ◽  
Shengjun Li ◽  
Hongqiu Wang

Hydrocarbon detection is always one of the most critical sections in geophysical exploration, which plays an important role in subsequent hydrocarbon production. However, due to the low signal-to-noise ratio and weak reflection amplitude of deep seismic data, some conventional methods do not always provide favorable hydrocarbon prediction results. The interesting dolomite reservoirs in Central Sichuan are buried over an average depth of 4500 m, and the dolomite rocks have a low porosity below approximately 4%, which is measured by well-logging data. Furthermore, the dominant system of pores and fractures as well as strong heterogeneity along the lateral and vertical directions lead to some difficulties in describing the reservoir distribution. Spectral decomposition (SD) has become successful in illuminating subsurface features and can also be used to identify potential hydrocarbon reservoirs by detecting low-frequency shadows. However, the current applications for hydrocarbon detection always suffer from low resolution for thin reservoirs, probably due to the influence of the window function and without a prior constraint. To address this issue, we developed sparse inverse SD (SISD) based on the wavelet transform, which involves a sparse constraint of time-frequency spectra. We focus on investigating the applications of sparse spectral attributes derived from SISD to deep marine dolomite hydrocarbon detection from a 3D real seismic data set with an area of approximately [Formula: see text]. We predict and evaluate gas-bearing zones in two target reservoir segments by analyzing and comparing the spectral amplitude responses of relatively high- and low-frequency components. The predicted results indicate that most favorable gas-bearing areas are located near the northeast fault zone in the upper reservoir segment and at the relatively high structural positions in the lower reservoir segment, which are in good agreement with the gas-testing results of three wells in the study area.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3985 ◽  
Author(s):  
Siyu Chen ◽  
Yanzhang Wang ◽  
Jun Lin

Residence time difference (RTD) fluxgate sensor is a potential device to measure the DC or low-frequency magnetic field in the time domain. Nevertheless, jitter noise and magnetic noise severely affect the detection result. A novel post-processing algorithm for jitter noise reduction of RTD fluxgate output strategy based on the single-frequency time difference (SFTD) method is proposed in this study to boost the performance of the RTD system. This algorithm extracts the signal that has a fixed frequency and preserves its time-domain information via a time–frequency transformation method. Thereby, the single-frequency signal without jitter noise, which still contains the ambient field information in its time difference, is yielded. Consequently, compared with the traditional comparator RTD method (CRTD), the stability of the RTD estimation (in other words, the signal-to-noise ratio of residence time difference) has been significantly boosted with sensitivity of 4.3 μs/nT. Furthermore, the experimental results reveal that the RTD fluxgate is comparable to harmonic fluxgate sensors, in terms of noise floor.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. R59-R67 ◽  
Author(s):  
Igor B. Morozov ◽  
Jinfeng Ma

The seismic-impedance inversion problem is underconstrained inherently and does not allow the use of rigorous joint inversion. In the absence of a true inverse, a reliable solution free from subjective parameters can be obtained by defining a set of physical constraints that should be satisfied by the resulting images. A method for constructing synthetic logs is proposed that explicitly and accurately satisfies (1) the convolutional equation, (2) time-depth constraints of the seismic data, (3) a background low-frequency model from logs or seismic/geologic interpretation, and (4) spectral amplitudes and geostatistical information from spatially interpolated well logs. The resulting synthetic log sections or volumes are interpretable in standard ways. Unlike broadly used joint-inversion algorithms, the method contains no subjectively selected user parameters, utilizes the log data more completely, and assesses intermediate results. The procedure is simple and tolerant to noise, and it leads to higher-resolution images. Separating the seismic and subseismic frequency bands also simplifies data processing for acoustic-impedance (AI) inversion. For example, zero-phase deconvolution and true-amplitude processing of seismic data are not required and are included automatically in this method. The approach is applicable to 2D and 3D data sets and to multiple pre- and poststack seismic attributes. It has been tested on inversions for AI and true-amplitude reflectivity using 2D synthetic and real-data examples.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. IM37-IM49 ◽  
Author(s):  
Sanyi Yuan ◽  
Jinghan Wang ◽  
Tao Liu ◽  
Tao Xie ◽  
Shangxu Wang

Phase information of seismic signals is sensitive to subsurface discontinuities. However, 1D phase attributes are not robust when dealing with noisy data. In addition, variations of seismic phase attributes with azimuth are seldom explored. To address these issues, we have developed 6D phase-difference attributes (PDAs) derived from azimuthal phase-frequency spectra. For the seismic volume of a certain azimuth and frequency, we first construct stacked phase traces at each common-depth point along a certain decomposed trending direction. Then, the 6D PDA is extracted by calculating the complex-valued covariance at a 6D phase space. The proposed method enables characterization of the subsurface discontinuities and indicates seismic anisotropy. Moreover, we provide one q-value attribute obtained by singular value decomposition to describe the variation intensity of PDA along different azimuths. Simulated and field wide-azimuth seismic data sets are used to illustrate the performance of the proposed 6D PDA and the derived q-value attribute. The results show that PDA at different frequencies can image various geologic features, including faults, fracture groups, and karst caves. Our field data example shows that PDA is able to discern the connectivity of karst caves using large-azimuth data. In addition, PDA along different azimuths and the q-value attribute provide a measurement of azimuthal variations, as well as the anisotropy. Our 6D PDA method can be used as a potential tool for wide-azimuth seismic data interpretation.


2016 ◽  
Vol 4 (4) ◽  
pp. T533-T542 ◽  
Author(s):  
Yangkang Chen

The high-resolution mapping of karst features is of great importance to hydrocarbon discovery and recovery in the resource exploration field. Currently, however, there are few effective methods specifically tailored for such a task. The 3D seismic data can reveal the existence of karsts to some extent, but a precise characterization cannot be obtained. I have developed an effective framework for accurately probing the subsurface karst features using a well-developed time-frequency decomposition algorithm. More specifically, I have introduced a frequency interval analysis approach for obtaining the best karsts detection result using an optimal frequency interval. A high-resolution time-frequency transform was preferred in the proposed framework to capture the inherent frequency components hidden behind the amplitude map. Although the single-frequency slice could not provide a reliable karst depiction result, the summation over the selected frequency interval could obtain a high-resolution and high-fidelity delineation of subsurface karsts. I used a publicly available 3D field seismic data set as an example to indicate the performance of the proposed method.


2014 ◽  
Vol 11 (4) ◽  
pp. 447-458 ◽  
Author(s):  
Xiong-Wen Wang ◽  
Hua-Zhong Wang

2021 ◽  
pp. 1-81
Author(s):  
Xiaokai Wang ◽  
Zhizhou Huo ◽  
Dawei Liu ◽  
Weiwei Xu ◽  
Wenchao Chen

Common-reflection-point (CRP) gather is one extensive-used prestack seismic data type. However, CRP suffers more noise than poststack seismic dataset. The events in the CRP gather are always flat, and the effective signals from neighboring traces in the CRP gather have similar forms not only in the time domain but also in the time-frequency domain. Therefore, we firstly use the synchrosqueezing wavelet transform (SSWT) to decompose seismic traces to the time-frequency domain, as the SSWT has better time-frequency resolution and reconstruction properties. Then we propose to use the similarity of neighboring traces to smooth and threshold the SSWT coefficients in the time-frequency domain. Finally, we used the modified SSWT coefficients to reconstruct the denoised traces for the CRP gather. Synthetic and field data examples show that our proposed method can effectively attenuate random noise with a better attenuation performance than the commonly-used principal component analysis, FX filter, and the continuous wavelet transform method.


Sign in / Sign up

Export Citation Format

Share Document