BEST BOUNDS ON DENSITY AND DEPTH FROM GRAVITY DATA

Geophysics ◽  
1974 ◽  
Vol 39 (5) ◽  
pp. 644-649 ◽  
Author(s):  
Robert L. Parker

Gravity data cannot usually be inverted to yield unique structures from incomplete data; however, there is a smallest density compatible with the data or, if the density is known, a deepest depth of burial. A general theory is derived which gives the greatest lower bound on density or the least upper bound on depth. These bounds are discovered by consideration of a class of “ideal” bodies which achieve the extreme values of depth or density. The theory is illustrated with several examples which are solved by analytic methods. New maximum depth rules derived by this theory are, unlike some earlier rules of this type, optimal for the data they treat.

Author(s):  
Bart Michels

Abstract Given a closed geodesic on a compact arithmetic hyperbolic surface, we show the existence of a sequence of Laplacian eigenfunctions whose integrals along the geodesic exhibit nontrivial growth. Via Waldspurger’s formula we deduce a lower bound for central values of Rankin-Selberg L-functions of Maass forms times theta series associated to real quadratic fields.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 438
Author(s):  
Viliam Ďuriš ◽  
Renáta Bartková ◽  
Anna Tirpáková

The probability theory using fuzzy random variables has applications in several scientific disciplines. These are mainly technical in scope, such as in the automotive industry and in consumer electronics, for example, in washing machines, televisions, and microwaves. The theory is gradually entering the domain of finance where people work with incomplete data. We often find that events in the financial markets cannot be described precisely, and this is where we can use fuzzy random variables. By proving the validity of the theorem on extreme values of fuzzy quantum space in our article, we see possible applications for estimating financial risks with incomplete data.


1998 ◽  
Vol 58 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Shiqing Zhang

Using the equivariant Ljusternik-Schnirelmann theory and the estimate of the upper bound of the critical value and lower bound for the collision solutions, we obtain some new results in the large concerning multiple geometrically distinct periodic solutions of fixed energy for a class of planar N-body type problems.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.


2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Giovanna D’Agostino ◽  
Giacomo Lenzi

AbstractIn this paper we consider the alternation hierarchy of the modal μ-calculus over finite symmetric graphs and show that in this class the hierarchy is infinite. The μ-calculus over the symmetric class does not enjoy the finite model property, hence this result is not a trivial consequence of the strictness of the hierarchy over symmetric graphs. We also find a lower bound and an upper bound for the satisfiability problem of the μ-calculus over finite symmetric graphs.


2018 ◽  
Vol 28 (3) ◽  
pp. 365-387
Author(s):  
S. CANNON ◽  
D. A. LEVIN ◽  
A. STAUFFER

We give the first polynomial upper bound on the mixing time of the edge-flip Markov chain for unbiased dyadic tilings, resolving an open problem originally posed by Janson, Randall and Spencer in 2002 [14]. A dyadic tiling of size n is a tiling of the unit square by n non-overlapping dyadic rectangles, each of area 1/n, where a dyadic rectangle is any rectangle that can be written in the form [a2−s, (a + 1)2−s] × [b2−t, (b + 1)2−t] for a, b, s, t ∈ ℤ⩾ 0. The edge-flip Markov chain selects a random edge of the tiling and replaces it with its perpendicular bisector if doing so yields a valid dyadic tiling. Specifically, we show that the relaxation time of the edge-flip Markov chain for dyadic tilings is at most O(n4.09), which implies that the mixing time is at most O(n5.09). We complement this by showing that the relaxation time is at least Ω(n1.38), improving upon the previously best lower bound of Ω(n log n) coming from the diameter of the chain.


1994 ◽  
Vol 37 (5 Sup.) ◽  
Author(s):  
C. Morelli

The recent advances in experimental petrography together with the information derived from the super-deep drilling projects have provided additional constraints for the interpretation of refraction and reflection seismic data. These constraints can also be used in the interpretation of magnetic and gravity data to resolve nonuniqueness. In this study, we re-interpret the magnetic and gravity data of the Italian peninsula and neighbouring areas. In view of the constraints mentioned above, it is now possible to find an agreement between the seismic and gravity models of the Central Alps. By taking into account the overall crustal thickness, we have recognized the existence of three types of Moho: 1) European which extends to the north and west of the peninsula and in the Corsican-Sardinian block. Its margin was the foreland in the Alpine Orogeny and it was the ramp on which European and Adriatic mantle and crustal slices were overthrusted. This additional load caused bending and deepening and the Moho which now lies beneath the Adriatic plate reaching a maximum depth of approximately 75 km. 2) Adriatic (or African) which lies beneath the Po plain, the Apennines and the Adriatic Sea. The average depth of the Moho is about 30-35 km below the Po plain and the Adriatic Sea and it increases toward the Alps and the Tyrrhenian Sea (acting as foreland along this margin). The maximum depth (50 km) is reached in Calabria. 3) Pery-Tyrrhenian. This is an oceanic or thinned continental crust type of Moho. It borders the oceanic Moho of the Tyrrhenian Sea and it acquires a transitional character in the Ligurian and Provençal basins (<15 km thickness) while further thickening occurs toward the East where the Adriatic plate is overthrusted. In addition, the interpretation of the heat flow data appears to confirm the origin of this Moho and its geodynamic allocation.


Sign in / Sign up

Export Citation Format

Share Document