GROUND AND AIRBORNE RESISTIVITY SURVEYS OF PERMAFROST NEAR FAIRBANKS, ALASKA

Geophysics ◽  
1975 ◽  
Vol 40 (4) ◽  
pp. 641-656 ◽  
Author(s):  
P. Hoekstra ◽  
P. V. Sellmann ◽  
A. Delaney

In permafrost regions investigations for such geotechnical endeavors as route selection for roads and pipelines and site investigations for buildings and dam construction often require that a careful assessment be made of the presence or absence of frozen ground, of the ice content of frozen ground, and of the depth of frozen ground. In the vicinity of Fairbanks, Alaska, where the permafrost is discontinuous, ground and airborne methods of mapping electrical resistivity using radiowaves were tested as means of delineating permafrost. When the resistivity maps are compared with surficial geological data, the following conclusions are reached: (1) In areas of fine‐grained sediments, where the near surface sediments are relatively uniform, VLF resistivity delineates permafrost. (2) In areas where surface sediments vary widely (flood plains), VLF resistivity shows little information on permafrost conditions but can provide other important geotechnical information, such as, depth to bedrock, surface soil type, and layering. Comparison of the apparent resistivity derived from a surface impedance measurement at VLF on the ground with the apparent resistivity derived from an airborne measurement of wavetilt shows that the regional trends in the data agree, but the surface impedance measurements show much more local detail in ground conditions. When the surface layers are also frozen, the surface impedance method of measuring ground resistivity was found to have distinct advantages over conventional galvanic methods in terms of production and problems associated with probe contact resistance.

2009 ◽  
Vol 3 (3) ◽  
pp. 895-918 ◽  
Author(s):  
C. Kneisel ◽  
A. Bast ◽  
D. Schwindt

Abstract. Up to now an efficient 3-D geophysical mapping of the subsurface in mountainous environments with rough terrain has not been possible. A merging approach of several closely spaced 2-D electrical resistivity tomography (ERT) surveys to build up a quasi-3-D model of the electrical resistivity is presented herein as a practical compromise for inferring subsurface characteristics and lithology. The ERT measurements were realised in a small glacier forefield in the Swiss Alps with complex terrain exhibiting a small scale spatial variability of surface substrate. To build up the grid for the quasi-3-D measurements the ERT surveys were arranged as parallel profiles and perpendicular tie lines. The measured 2-D datasets were collated into one quasi-3-D file. A forward modelling approach – based on studies at a permafrost site below timberline – was used to optimize the geophysical survey design for the mapping of the mountain permafrost distribution in the investigated glacier forefield. Quasi-3-D geoelectrical imaging is a useful method for mapping of heterogeneous frozen ground conditions and can be considered as a further milestone in the application of near surface geophysics in mountain permafrost environments.


Geophysics ◽  
1996 ◽  
Vol 61 (1) ◽  
pp. 288-293 ◽  
Author(s):  
Maureen Jacoby ◽  
Jack Dvorkin ◽  
Xingzhou Liu

Seasonal thawing and freezing of near‐surface sediments significantly affect the interpretation of seismic reflection surveys and vertical seismic profiling, as well as activity on the surface. Permafrost covers much of the Earth’s colder regions and is also subject to periodic thawing and freezing. The significance of the regions with large seasonal temperature variations for exploration and engineering activities makes understanding the elasticity of frozen ground an important practical and scientific goal.


2021 ◽  
Vol 109 ◽  
pp. 103363
Author(s):  
Ben Roche ◽  
Jonathan M. Bull ◽  
Hector Marin-Moreno ◽  
Timothy G. Leighton ◽  
Ismael H. Falcon-Suarez ◽  
...  

1986 ◽  
Vol 8 ◽  
pp. 78-81 ◽  
Author(s):  
W. Haeberli ◽  
F. Epifani

Techniques for mapping the distribution of buried glacier ice are discussed and the results, from a study carried out within the framework of flood protection work in the Italian Alps, are presented. Bottom temperatures of the winter snow cover (BTS) primarily indicate the heat flow conditions in the underlying ground and mainly depend on the presence or absence of an ice layer beneath the surface. Determination of BTS values is therefore an inexpensive method for quickly mapping the near-surface underground ice in areas where there is 1 m or more of winter snow cover. At greater depths, and/or when more detail is required, geoelectrical resistivity soundings and seismic refraction soundings are most commonly used to investigate underground ice. A combination of the two sounding techniques allows the vertical extent and the main characteristics (frozen ground, dead glacier ice) to be determined in at least a semi-quantitative way. Complications mainly arise from irregularity in the horizontal extension of the studied underground ice bodies, and they may have to be overcome by expensive core drillings and borehole measurements. Widespread occurrence of buried glacier ice was observed in morainic deposits, surrounding an ice-dammed lake near Macugnaga, Italy.


2008 ◽  
Vol 41-42 ◽  
pp. 401-406 ◽  
Author(s):  
Xian Hua Liu ◽  
Roshun Paurobally ◽  
Jie Pan

Structural health monitoring or damage detection has long been a research interest for its great potential for life safety and economic benefits to the industrialized world. Structural vibration behavior is an essential signature of the integrity of structures and hence has been used for damage detection. Structural vibration impedance by way of piezoceramic patch excitation offers a local damage detection technique. It has been known that temperature change has adverse effects on the measured impedance result and can complicate the damage analysis. It is believed that one way of temperature influence on vibration is through adding thermal prestress to the structure. Prestress affects vibration in different ways on different structures and application problems. For the impedance method, prestress comes not only from temperature change but also from other sources such as wind, gravity and working load. This paper deals with prestress effects in the context of local vibration behavior of structures. A theoretical analysis is given on how prestress affects the vibration. Experimental impedance measurement results for piezoceramic patch excited vibration of simple structures such as plates under prestress are presented.


Author(s):  
J. H. Redding

AbstractBy the end of 1986, over 400 km of high pressure (70 bar) natural gas pipeline will have been constructed in the Irish Republic, much of it laid in sparsely populated rural areas where topography, hydrology, near surface geology and ground conditions can significantly influence construction feasibility and cost. Identifying, quantifying and (where possible) avoiding areas of potential difficulty or hazard are aspects of route selection to which engineering geology can make an important contribution. This contribution is discussed in relation to the Cork-Dublin pipeline completed in 1982, and the Limerick, Waterford and Mallow lines due for completion this year. In particular, the application and merits of stereo aerial photographic interpretation, superficial geological mapping and field study are outlined, together with the use of more traditional methods of site investigation. Attention is focussed on indigenous engineering geological problems associated with shallow rock, limestone karst, peat bog and poorly drained alluvial and morainic soils. Data acquisition and presentation are discussed within the overall context of civil engineering contract preparation and administration. The usefulness of this approach, particularly for predicting and minimising construction costs, forestalling claims and generally facilitating on-site supervision, is emphasised.


2013 ◽  
Vol 4 (1) ◽  
pp. 75-79
Author(s):  
Dr Aktharuzzaman ◽  
Tanvir N Baig ◽  
K Siddique-e Rabbani

Designing of electronic circuitry and development of necessary software has been performed in the present work for a microcontroller based 4-electrode Focused Impedance measurement system. This needs a complex sequential analog switching of constant current ac signal generator and a potential measuring unit to 4 electrodes on the object under study. The performances of the designed system and the developed microcontroller software have been studied using a commercially available simulation software, ‘Proteus-7’, and the results are very satisfactory. DOI: http://dx.doi.org/10.3329/bjmp.v4i1.14690 Bangladesh Journal of Medical Physics Vol.4 No.1 2011 75-79


2020 ◽  
Author(s):  
Mariusz Majdanski ◽  
Artur Marciniak ◽  
Bartosz Owoc ◽  
Wojciech Dobiński ◽  
Tomasz Wawrzyniak ◽  
...  

<p>The Arctic regions are the place of the fastest observed climate change. One of the indicators of such evolution are changes occurring in the glaciers and the subsurface in the permafrost. The active layer of the permafrost as the shallowest one is well measured by multiple geophysical techniques and in-situ measurements.</p><p>Two high arctic expeditions have been organized to use seismic methods to recognize the shape of the permafrost in two seasons: with the unfrozen ground (October 2017) and frozen ground (April 2018). Two seismic profiles have been designed to visualize the shape of permafrost between the sea coast and the slope of the mountain, and at the front of a retreating glacier. For measurements, a stand-alone seismic stations has been used with accelerated weight drop with in-house modifications and timing system. Seismic profiles were acquired in a time-lapse manner and were supported with GPR and ERT measurements, and continuous temperature monitoring in shallow boreholes.</p><p>Joint interpretation of seismic and auxiliary data using Multichannel analysis of surface waves, First arrival travel-time tomography and Reflection imaging show clear seasonal changes affecting the active layer where P-wave velocities are changing from 3500 to 5200 m/s. This confirms the laboratory measurements showing doubling the seismic velocity of water-filled high-porosity rocks when frozen. The same laboratory study shows significant (>10%) increase of velocity in frozen low porosity rocks, that should be easily visible in seismic.</p><p>In the reflection seismic processing, the most critical part was a detailed front mute to eliminate refracted arrivals spoiling wide-angle near-surface reflections. Those long offset refractions were however used to estimate near-surface velocities further used in reflection processing. In the reflection seismic image, a horizontal reflection was traced at the depth of 120 m at the sea coast deepening to the depth of 300 m near the mountain.</p><p>Additionally, an optimal set of seismic parameters has been established, clearly showing a significantly higher signal to noise ratio in case of frozen ground conditions even with the snow cover. Moreover, logistics in the frozen conditions are much easier and a lack of surface waves recorded in the snow buried geophones makes the seismic processing simpler.</p><p>Acknowledgements               </p><p>This research was funded by the National Science Centre, Poland (NCN) Grant UMO-2015/21/B/ST10/02509.</p>


Sign in / Sign up

Export Citation Format

Share Document