Seismic shear‐wave observations in a physical model experiment

Geophysics ◽  
1983 ◽  
Vol 48 (6) ◽  
pp. 688-701 ◽  
Author(s):  
Robert H. Tatham ◽  
Donald V. Goolsbee ◽  
Wulf F. Massell ◽  
H. Roice Nelson

The observation and common‐depth‐point (CDP) processing of mode‐converted shear waves is demonstrated for real data collected in a physical model experiment. The model, submerged in water, represented water depth scaled to 250 ft, the first subsea reflector at 4000 ft, and the last reflector at 7000 ft below the sea floor with a structural wedge at the center. Very efficient mode conversion, from P to SV and back to P, is anticipated for angles of incidence at the liquid‐solid interface (sea floor) between 35 and 80 degrees. The model, constructed of Plexiglas and 3180 resin, will support elastic shear‐wave propagation. One anticipated problem, internal reflections from the sides of the model, was solved by tapering the sides of the model to 45 degrees off vertical. The P wave reflection coefficient at an interface between Plexiglas and water is 35 percent for vertical incidence, but it diminishes to very nearly zero between 43 and 75 degrees. Thus, by tapering the sides of the model, any undesired internal P wave reflections had to undergo at least two reflections at angles of incidence in the low reflection coefficient range for P waves. Data were collected in both an end‐on CDP mode, with offsets from 1000 ft to 20,000 ft, and a variety of walkaway experiments with scaled ranges from 1000 ft to 31,000 ft. Processing and analysis of the data confirm the existence of mode‐converted shear‐wave reflections in a modeled marine environment. In particular, the S wave reflections from all interfaces are identified on both the 100 percent gathered records and the final stacked records. These SV wave reflections were isolated for stacking by considering those portions of the gathered records, both offset and arrival time, that correspond to optimum angles of incidence. In addition, τ-p processing isolated particular angles of incidence, further confirming the incidence angle‐range criterion. Thus, the desired events are unambiguously identified as mode‐converted shear waves.

2012 ◽  
Vol 610-613 ◽  
pp. 1533-1539 ◽  
Author(s):  
Xing Lian Ye ◽  
Ding Yang

Based on the Selective Catalystic Reduction (SCR) DeNOx project for 2×330MW-unit in a coal power plant, the gas flow field in SCR system has been optimized by numerical simulation. The optimized simulation results were compared with the physical model experiment, and the fly ash sedimentation in the duct was also investigated. Correlation analysis of the results shows that, the flow field predicted by numerical simulation matches very well with that of physical model experiment. Numerical simulation can not only predict but also improve the flow field in SCR system. The combination of simulation and physical model experiment provides a reliable basis for flow field optimization design in SCR system.


2012 ◽  
Vol 9 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Zheng-Hua Yang ◽  
Yi-Jian Huang ◽  
Yong-Xin Wu

Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 35-45
Author(s):  
Jarrod C. Dunne ◽  
Greg Beresford ◽  
Brian L. N Kennett

We developed guidelines for building a detailed elastic depth model by using an elastic synthetic seismogram that matched both prestack and stacked marine seismic data from the Gippsland Basin (Australia). Recomputing this synthetic for systematic variations upon the depth model provided insight into how each part of the model affected the synthetic. This led to the identification of parameters in the depth model that have only a minor influence upon the synthetic and suggested methods for estimating the parameters that are important. The depth coverage of the logging run is of prime importance because highly reflective layering in the overburden can generate noise events that interfere with deeper events. A depth sampling interval of 1 m for the P-wave velocity model is a useful lower limit for modeling the transmission response and thus maintaining accuracy in the tie over a large time interval. The sea‐floor model has a strong influence on mode conversion and surface multiples and can be built using a checkshot survey or by testing different trend curves. When an S-wave velocity log is unavailable, it can be replaced using the P-wave velocity model and estimates of the Poisson ratio for each significant geological formation. Missing densities can be replaced using Gardner’s equation, although separate substitutions are required for layers known to have exceptionally high or low densities. Linear events in the elastic synthetic are sensitive to the choice of inelastic attenuation values in the water layer and sea‐floor sediments, while a simple inelastic attenuation model for the consolidated sediments is often adequate. The usefulness of a 1-D depth model is limited by misties resulting from complex 3-D structures and the validity of the measurements obtained in the logging run. The importance of such mis‐ties can be judged, and allowed for in an interpretation, by recomputing the elastic synthetic after perturbing the depth model to simulate the key uncertainties. Taking the next step beyond using simplistic modeling techniques requires extra effort to achieve a satisfactory tie to each part of a prestack seismic record. This is rewarded by the greater confidence that can then be held in the stacked synthetic tie and applications such as noise identification, data processing benchmarking, AVO analysis, and inversion.


1996 ◽  
Author(s):  
Steven A. Markley ◽  
Daniel A. Ebrom ◽  
Karuthethil K. Sekharan ◽  
John A. McDonald

1967 ◽  
Vol 7 (02) ◽  
pp. 136-148 ◽  
Author(s):  
A.R. Gregory

Abstract A shear wave velocity laboratory apparatus and techniques for testing rock samples under simulated subsurface conditions have been developed. In the apparatus, two electromechanical transducers operating in the frequency range 0.5 to 5.0 megahertz (MHz: megacycles per second) are mounted in contact with each end of the sample. Liquid-solid interfaces of Drakeol-aluminum are used as mode converters. In the generator transducer, there is total mode conversion from P-wave energy to plain S-wave energy, S-wave energy is converted back to P-wave energy in the motor transducer. Similar transducers without mode converters are used to measure P-wave velocities. The apparatus is designed for testing rock samples under axial or uniform loading in the pressure range 0 to 12,000 psi. The transducers have certain advantages over those used by King,1 and the measurement techniques are influenced less by subjective elements than other methods previously reported. An electronic counter-timer having a resolution of 10 nanoseconds measures the transit time of ultrasonic pulses through the sample; elastic wave velocities of most homogeneous materials can be measured with errors of less than 1 percent. S- and P-wave velocity measurements on Bandera sandstone and Solenhofen limestone are reported for the axial pressure range 0 to 6,000 psi and for the uniform pressure range 0 to 10,000 psi. The influence of liquid pore saturants on P- and S-wave velocity is investigated and found to be in broad agreement with Biot's theory. In specific areas, the measurements do not conform to theory. Velocities of samples measured under axial and uniform loading are compared and, in general, velocities measured under uniform stress are higher than those measured under axial stress. Liquid pore fluids cause increases in Poisson's ratio and the bulk modulus but reduce the rigidity modulus, Young's modulus and the bulk compressibility. INTRODUCTION Ultrasonic pulse methods for measuring the shear wave velocity of rock samples in the laboratory have been gradually improved during the last few years. Early experimental pulse techniques reported by Hughes et al.2, and by Gregory3 were beset by uncertainties in determining the first arrival of the shear wave (S-wave) energy. Much of this ambiguity was caused by the multiple modes propagated by piezoelectric crystals and by boundary conversions in the rock specimens. Shear wave velocity data obtained from the critical angle method, described by Schneider and Burton4 and used later by King and Fatt5 and by Gregory,3,6 are of limited accuracy, and interpreting results is too complicated for routine laboratory work. The mode conversion method described by Jamieson and Hoskins7 was recently used by King1 for measuring the S-wave velocities of dry and liquid-saturated rock samples. Glass-air interfaces acted as mode converters in the apparatus, and much of the compressional (P-wave) energy apparently was eliminated from the desired pure shear mode. A more detailed discussion of the current status of laboratory pulse methods applied to geological specimens is given in a review by Simmons.8


Geophysics ◽  
1992 ◽  
Vol 57 (12) ◽  
pp. 1583-1592 ◽  
Author(s):  
John O’Brien

Mode conversion in the subsurface can generate shear waves with sufficient amplitude so that they can be used to measure shear‐wave propagation effects. Significant mode conversion can occur even at near vertical incidence if there is sufficient contrast in Poisson’s ratio across the interface. This can be exploited to measure shear‐wave velocities in the underlying section in the course of vertical seismic profile (VSP) acquisition. The technique is effective even in poorly consolidated formations with low shear‐wave velocities where sonic waveform logging fails. Where shear‐wave velocity data are available from sonic waveform logs, the VSP data can be used to verify the wireline data and to calibrate these data to seismic frequencies. The technique is illustrated with a case study from the North Slope, Alaska, in which several shear‐wave events are observed propagating downward through the subsurface. The seismic source is a vertical‐motion vibrator; shear waves are generated via mode conversion in the subsurface and also radiated from the source at the surface, and they are observed with both far‐ and near‐source offsets. The shear‐wave events are strong even on the near‐offset data, which is attributed to the contrast in Poisson’s ratio at the interfaces where mode conversion occurs. The technique is not limited to the hard surfaces of the Arctic and should work in any well, either land or marine, that penetrates shallow interfaces where mode conversion can occur.


Geophysics ◽  
1992 ◽  
Vol 57 (4) ◽  
pp. 643-646
Author(s):  
Hans A. K. Edelmann

If shear waves are to be recorded, all other types of waves (including P waves) have to be regarded as noise. All data processing applied later is limited in its success, not so much by the character of the signal, but by the character of the noise superimposed on the signal. Therefore an optimum method for simultaneous P‐ and S‐wave recording does not exist per se. All efforts made in the field that help to enhance the relatively weak S‐wave signal enhance the possibility of a more detailed interpretation such as polarization analysis. In the course of shear‐wave investigations over a period of more than ten years, simultaneous P‐ and SV‐wave recording has yielded fairly good results for velocity ratio determination, but has never produced satisfying results for polarization analysis because of the interfering P‐wave events. When generating pure SH‐waves, however, P‐wave arrival amplitudes in a shot record can, under favorable conditions, be kept well below the SH‐wave amplitude (−40 dB). Through additional processing, a ratio of P‐ to SH‐signal amplitude of −60 dB can be reached. The improvement achieved by making separate shear‐wave recordings, obviously, must be weighed against the additional costs caused by these recordings.


Sign in / Sign up

Export Citation Format

Share Document