Continuously time‐variable recursive digital band‐pass filters for seismic signal processing

Geophysics ◽  
1983 ◽  
Vol 48 (6) ◽  
pp. 702-712 ◽  
Author(s):  
R. A. Stein ◽  
N. R. Bartley

A design technique is described for continuously time‐variable recursive digital band‐pass filters for seismic signal processing. Two types of band‐pass filters are considered: a cascade of a low‐pass and a high‐pass filter, and a direct band‐pass filter, with all filters being derived from a continuous unit‐bandwidth Butterworth low‐pass prototype. Linear interpolation of the filter coefficients between points at which they are known exactly is used to reduce the computational overhead. Data are given for determining the length of the interpolation interval to meet prescribed worst case magnitude and frequency error criteria. A zero‐phase response is achieved by filtering in the forward time direction followed by filtering in the reverse time direction. An example is included.

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Noy Citron ◽  
Eldad Holdengreber ◽  
Oz Sorkin ◽  
Shmuel E. Schacham ◽  
Eliyahu Farber

A high-performance S-band down-conversion microstrip mixer, for operation from 77 K to 300 K, is described. The balanced mixer combines a 90 degree hybrid coupler, two Schottky diodes, a band pass filter, and a low pass filter. The coupler phase shift drastically improves noise rejection. The circuit was implemented according to the configuration obtained from extensive simulation results based on electromagnetic analysis. The experimental results agreed well with the simulation results, showing a maximum measured insertion loss of 0.4 dB at 2 GHz. The microstrip mixer can be easily adjusted to different frequency ranges, up to about 50 GHz, through the proper choice of microstrip configuration. This novel S-band cryogenic mixer, implemented without resorting to special components, shows a very high performance at liquid nitrogen temperatures, making this mixer very suitable for high-temperature superconductive applications, such as front-ends.


2016 ◽  
Vol 07 (03) ◽  
pp. 83-99 ◽  
Author(s):  
Raj Senani ◽  
Abdhesh Kumar Singh ◽  
Ashish Gupta ◽  
Data Ram Bhaskar

Filters are some of the highly essential components used for operating in most electronic based circuits. Filters are most important and widely used to block some portion of signals according to frequency. Having a detailed knowledge of various filters. A designer will be able to design an efficient communication networks, by varying the cut off frequencies. Filters are required in computer, mechanical and some other fields too. As days passed by the usage of active and passive filters has gradually increased in the market. There are various types of Filters available, in which we are going to perform the simulation of Low pass, High Pass and Band pass Filter using Verilog Hardware Descriptive Language and Xilinx ISE 13.1 as a simulation tool. This paper provides a detailed explanation, circuit diagram, advantages, disadvantages, applications, working of Verilog code and simulation result of Low pass, High pass and Band pass filter. Using Verilog Hardware Descriptive language its simpler to understand and execute the functionality of filters then using other tools like MATLAB, Microcontroller, Microprocessor.


This paper presents a voltage-mode(VM) tunable multifunction inverse filter configuration employing current differencing buffered amplifiers (CDBA). The presented structure utilizes two CDBAs, two/three capacitors and four/five resistors to realize inverse low pass filter (ILPF), inverse high pass filter (IHPF), inverse band pass filter (IBPF), and inverse band reject filter(IBRF) from the same circuit topology by suitable selection(s) of the branch admittances(s). PSPICE simulations have been performed with 0.18µm TSMC CMOS technology to validate the theory. Some sample experimental results have also been provided using off-the-shelf IC AD844 based CDBA.


2010 ◽  
Vol 19 (08) ◽  
pp. 1641-1650 ◽  
Author(s):  
FIRAT KAÇAR

A new tunable CMOS FDNR circuit is proposed. The circuit is based on the transcapacitive gyrator approach with both transcapacitive stages realized by MOS transistors configuration. This FDNR element lends itself well to the design of low-pass ladder filters and its use will result in a more efficient integrated circuit implementation than filters that simulate floating inductors utilizing resistive gyrators. The applications of FDNR to realize a current-mode fifth-order elliptic filter and current mode sixth-order elliptic band-pass filter are given. The proposed FDNR is simulated using CMOS TSMC 0.35 μm technology. Simulation results are given to confirm the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document