scholarly journals Joint Gravity and Seismic Reflection Methods to Characterize the Deep Aquifers in Arid Ain El Beidha Plain (Central Tunisia, North Africa)

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1310
Author(s):  
Hajer Azaiez ◽  
Hakim Gabtni ◽  
Mourad Bédir

Electric resistivity sounding and tomography, as well as electromagnetic sounding, are the classical methods frequently used for hydrogeological studies. In this work, we propose the development and implementation of an original integrated approach using the unconventional hydro–geophysical methods of gravity and seismic reflection for the fast, large–scale characterization of hydrogeological potential using the Ain El Beidha plain (central Tunisia) as an analogue. Extending the values of vintage petroleum seismic reflection profiles and gravity data, in conjunction with available geological and hydrogeological information, we performed an advanced analysis to characterize the geometry of deep tertiary (Oligocene and Eocene) aquifers in this arid area. Residual and tilt angle gravity maps revealed that most gravity anomalies have a short wavelength. The study area was mainly composed of three major areas: the Oued Ben Zitoun and Ain El Beidha basins, which are both related to negative gravity trends corresponding to low–density subsiding depocenters. These basins are separated by an important NE–SW trend called “El Gonna–J. El Mguataa–Kroumet Zemla” gravity high. Evaluation of the superposition of detected lineaments and Euler deconvolution solutions’ maps showed several NE–SW and N–S relay system faults. The 3D density inversion model using a lateral and vertical cutting plane suggested the presence of two different tectonic styles (thin VS thick). Results from the gravity analysis were in concordance with the seismic analysis. The deep Oligocene and Eocene seismic horizons were calibrated to the hydraulic wells and surrounding outcrops. Oligocene and Eocene geological reservoirs appear very fractured and compartmented. The faulting network also plays an important role in enhancing groundwater recharge process of the Oligocene and Eocene aquifers. Finally, generated isochron maps provided an excellent opportunity to develop future comprehensive exploration surveys over smaller and more favorable areas’ sub–basins.

Author(s):  
Richard M. Carruthers ◽  
John D. Cornwell

Lateral variations in the density and magnetization of the rocks within the crust give rise to "anomalies" in the Earth's gravity and magnetic fields. These anomalies can be measured and interpreted in terms of the geology both in a qualitative sense, by mapping out trends and changes in anomaly style, and quantitatively, by creating models of the subsurface which reproduce the observed fields. Such interpretations are generally less definitive in themselves than the results from seismic surveys (see chapter 12), but the data are widely available and can provide information in areas where other methods are ineffective or have not been applied. As the different geophysical techniques respond to specific rock properties such as density, magnetization, and acoustic velocity, the results are complementary, and a fully integrated approach to data collection and interpretation is generally more effective than the sum of its parts assessed on an individual basis. Gravity and magnetic data have been acquired, at least to a reconnaissance scale, over most of the world. In particular, the release into the public domain of satellite altimetry information (combined with improved methods of data processing) means that there is gravity coverage to a similar standard for most of the offshore region to within about 50 km of the coast. Magnetic anomalies recorded from satellites provide global coverage, but the high altitude of the observations means that only large-scale features extending over many 10s of kilometers are delineated. Reconnaissance aeromagnetic surveys with flight lines 10-20 km apart provide a lateral anomaly resolution similar to that of the satellite gravity data. Oceanographic surveys undertaken by a variety of academic and research institutions are another valuable source of data in remote regions offshore which supplement and extend the more detailed coverage obtained over the continental shelves, for example, by oil companies in areas of hydrocarbon interest. Surveys over land vary widely in terms of acquisition parameters and quality, but some form of national compilation is available from many countries. A number of possible applications of the potential field (i.e., gravity and magnetic) data follow from the terms set out by UNCLOS. Paragraph 4(b) of article 76 states, "In the absence of evidence to the contrary, the foot of the continental slope is to be determined as the point of maximum change in the gradient at its base" (italics added).


2020 ◽  
Author(s):  
Dmitry Molodtsov ◽  
Duygu Kiyan ◽  
Christopher Bean

<p>We present a generalized 3-D multiphysics joint inversion scheme with a focus on large-scale regional problems. One of the key features of this scheme is the formulation of the structure coupling as a sparsity-promoting joint regularization. This approach makes it possible to simplify the structure of the objective function and to keep the number of hyperparameters relatively low, so that the inversion framework complexity scales well with respect to the number of geophysical methods and possible reference models used. To further simplify adding geophysical solvers to the framework and to optimize the discretization, we propose an alternating minimization scheme that decouples the inversion and the joint regularization steps. Decoupling is achieved by introducing an auxiliary multi-parameter model. This allows the individual subproblems to make use of problem-tailored grids and specialized optimization algorithms. As we will see, this is in particular important for the regularization subproblem. In contrast to straightforward 'cooperative inversion' formulation, decoupled inversion steps appear to be regularized by a standard quadratic model-norm penalty, and as a result existing separate inversion codes can be used with minimal, if any, modifications. The developed scheme is applied to magnetotelluric, seismic and gravity data and tested on synthetic model examples.</p>


2016 ◽  
Vol 55 (3) ◽  
Author(s):  
Renata Regina Constantino Regina Constantino ◽  
Eder Cassola Molina ◽  
Iata Anderson de Souza

Seismic is one of the main methods used for the identification of structures and stratigraphic studies in sedimentary basins. In the Santos Basin, numerous 2D and 3D seismic surveys are being conducted in order to get a better ima-ge of the geological section to depths beyond the base of salt layer. Crustal modelling studies that make joint interpretation of seismic and gravity data are found in the literature, however there are few studies that relate gravity anomalies directly to salt structures. This work aims to associate gravity anomalies with salt structures from seismic and gravimetric interpretation. For studies aimed to model the crustal structure from gravity field data, the knowledge of two major discontinuities is required, the basement and the Moho. Such interfaces are often not easily seen by seismic and so, during this study, they were found by different methods involving analysis of gravity anomalies. The other interfaces involving density contrasts were analyzed based on seismic interpretation. The results showed that the obtained seismic geological interpretations may provide additional information when compared to gravity anomaly data. In all the modelled profiles, some geological information of the Santos Basin that are not visible in the seismic, could be interpreted according to the geological model and the adjustment of gravity anomaly curves. As a final conclusion of this work, it is suggested that the combined analysis of the two cited geophysical methods, can provide important information about the crustal structure and to assist in modelling the salt layer.


2020 ◽  
Vol 50 (1) ◽  
pp. 1-32
Author(s):  
Ali AMJADI ◽  
Bahram AKASHE ◽  
Mohammad ARIAMANESH ◽  
Mohsen POURKERMANI

Using geophysical methods and measuring physical properties of subsurface rocks are good solutions for investigating the subsurface structures and exploring underground buried resources (such as oil, gas, water, minerals, etc.). This research investigates the anomaly sources of Zagros and the Red Sea by using the derivative filters, regularized filters, analytic signal, local-phase filter, 3D-inverse modelling with the Li-Oldenburg method. For this purpose, these filters are first applied to artificial models to determine the capability of each of these filters, a comparisons is also will be made between edge detection filters and finally applied to the real gravity of Zagros and Red Sea regions (taken from the EGM2008 Global Model). The overall result is that the effective depth of the sources of gravity anomalies of the Red Sea is approximately 200 km, and incoherently, up to a depth of 300 km. The effective depth of the Zagros anomalies sources is also about 180 km and since then it has continued inconsistently up to 400 km.


2019 ◽  
Vol 70 (5) ◽  
pp. 373-385
Author(s):  
Ahmad A. Azab

Abstract A rigorous processing and analysis of the gravity data with seismic reflection and borehole information enabled a general view of the deep-seated regional structures in the West Gharib-Bakr area, Eastern Desert, Egypt. In this context, several interpretational techniques were applied to learn more about the supra-basement structures and intra-basement sources. The interpretation started with a review of the seismic data to clarify the structural elements on top of the Miocene strata, where a number of isochronous reflection maps were constructed and had migrated into depth maps. The Bouguer anomaly map was processed using Fast Fourier Transform filtering based on spectral analysis to separate the gravity anomalies into its components. Gravity stripping was also performed under the seismic isopachs and density controls. The gravity effect of each rock unit was calculated and progressively removed from the original data to obtain a new gravity map on top of the Pre-Miocene. To ensure more reliable results, further filtering and analytical processes were applied to the stripped map. The results of seismic analysis show simple structural configurations at the Miocene level, with a significant increase of evaporite thickness along the Gulf of Suez coast. In contrast, analysis of the stripped gravity map reveals a more intricate structure at the Pre-Miocene level, with increasing numbers/lengths of faults on the basement surface. Lineament analysis shows two major peaks trending N0–20°W and N50–70°E, produced by two main forces in NNW–SSE (compression) and ENE–WSW (tension) directions. The models confirmed a rough and ruptured basement surface, with no evidence of any magmatic intrusions penetrating the sediments. The basement relief map delineates five basins/sub-basins in the area which are separated from each other by ridges/saddles.


1997 ◽  
Vol 34 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Hamid Telmat ◽  
Caroline N. Antonuk ◽  
Jean-Claude Mareschal

High-precision gravity data were collected along Lithoprobe seismic reflection lines in the northern part of the Grenville Province, in western Quebec. An interpretation is presented for line 52, which starts some 60 km southeast of the Grenville Front, traverses the parautochthonous Reservoir Dozois Terrane including the allochthonous slice of the Réservoir Cabonga Terrane, and ends near the town of Mont-Laurier, in the allochthonous Mont-Laurier Terrane. On the regional scale, the Bouguer gravity anomaly is consistent with the interpretation of the seismic reflection data. It supports crustal thinning southward of the Grenville Front, under the Cabonga allochthon. This thinning may be related to postorogenic extension. The gravity modelling shows dramatic thinning of the lower crust and suggests that extension was accommodated by extrusion of the lower crust. The gravity modelling also requires a steep boundary between the Réservoir Cabonga and the Réservoir Dozois terranes extending to ~ 15 km. The geometry of the Baskatong ramp derived from gravity data is also consistent with the seismic interpretation. This supports the suggestion that the Baskatong ramp is a major discontinuity along which Proterozoic terranes were accreted. In the Réservoir Cabonga Terrane in the northern part of the profile, the residual gravity anomalies (short wavelength variations) are related to outcropping mafic intrusions. Modelling of these anomalies complements the seismic reflection data, which did not image the base of the intrusions. The interpretation calls for three small distinct gabbroic bodies that extend no deeper than 3 km. The total volume of the intrusions is ~ 3000 km3.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Jose Antonio Moreira Lima

This paper is concerned with the planning, implementation and some results of the Oceanographic Modeling and Observation Network, named REMO, for Brazilian regional waters. Ocean forecasting has been an important scientific issue over the last decade due to studies related to climate change as well as applications related to short-range oceanic forecasts. The South Atlantic Ocean has a deficit of oceanographic measurements when compared to other ocean basins such as the North Atlantic Ocean and the North Pacific Ocean. It is a challenge to design an ocean forecasting system for a region with poor observational coverage of in-situ data. Fortunately, most ocean forecasting systems heavily rely on the assimilation of surface fields such as sea surface height anomaly (SSHA) or sea surface temperature (SST), acquired by environmental satellites, that can accurately provide information that constrain major surface current systems and their mesoscale activity. An integrated approach is proposed here in which the large scale circulation in the Atlantic Ocean is modeled in a first step, and gradually nested into higher resolution regional models that are able to resolve important processes such as the Brazil Current and associated mesoscale variability, continental shelf waves, local and remote wind forcing, and others. This article presents the overall strategy to develop the models using a network of Brazilian institutions and their related expertise along with international collaboration. This work has some similarity with goals of the international project Global Ocean Data Assimilation Experiment OceanView (GODAE OceanView).


2021 ◽  
Vol 28 (2) ◽  
pp. 24-41
Author(s):  
L. A. Kitrar ◽  
T. M. Lipkind

The article proposes a new set of composite indicators-predictors in business tendency surveys, which allow identifying early information signals of a cyclical nature in the economic behavior of business agents. The main criterion for the efficiency of such indicators is their sensitivity to a cyclical pattern and changes in the dynamics of statistical referents. Property such as a statistically significant lead in time series or earlier publication allows them to be combined into indicators of early response. The composite Business Activity Indicator (BAI) in the basic sectors of the Russian economy is calculated by the authors for the first time based on the results of regular (monthly and quarterly) business surveys of Rosstat for 1998–2020 with a large-scale coverage of sampling units. In 2020, the number of survey respondents averaged about 20,000 organizations of all sizes. The index reflects the «common» profile in the dynamics of short-term fluctuations of the key parameters of the economic environment, which consists of the «balances of opinions» of respondents to the questions unified for all sectoral surveys and connected with the reference quantitative statistics with cross-correlation coefficients that are statistically significantly different from zero, with a lead at least one quarter. This is its main difference from the well-known indices of economic sentiment and entrepreneurial confidence. The main components of the BAI are the new composite indices of real demand, current output, real employment, total profits and economic situation. They aggregate the relevant «order» statistics for the basic sectors of the national economy, including the main kinds of industrial activities, retail trade, construction, and services.The article provides a methodological substantiation and an extended procedure for identifying the BAI components; their composition is formed for the entire set of retrospective results of business tendency monitoring in Russia. A new Aggregate Economic Vulnerability Indicator with a counterdirectional profile and varying degrees of symmetry of its dynamics relative to the short-term movement of the BAI is being introduced as the main limitation of business activity. Proactive monitoring of emerging vulnerabilities in the business environment is necessary to warn their large-scale accumulation, prevent the risks of economic downturns and ensure the highest possible macroeconomic stability. This integrated approach makes it possible to determine the novelty of the proposed measurements of short-term cyclical fluctuations in economic development.


2009 ◽  
Vol 137 (11) ◽  
pp. 4030-4046 ◽  
Author(s):  
Daniel F. Steinhoff ◽  
Saptarshi Chaudhuri ◽  
David H. Bromwich

Abstract A case study illustrating cloud processes and other features associated with the Ross Ice Shelf airstream (RAS), in Antarctica, is presented. The RAS is a semipermanent low-level wind regime primarily over the western Ross Ice Shelf, linked to the midlatitude circulation and formed from terrain-induced and large-scale forcing effects. An integrated approach utilizes Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery, automatic weather station (AWS) data, and Antarctic Mesoscale Prediction System (AMPS) forecast output to study the synoptic-scale and mesoscale phenomena involved in cloud formation over the Ross Ice Shelf during a RAS event. A synoptic-scale cyclone offshore of Marie Byrd Land draws moisture across West Antarctica to the southern base of the Ross Ice Shelf. Vertical lifting associated with flow around the Queen Maud Mountains leads to cloud formation that extends across the Ross Ice Shelf to the north. The low-level cloud has a warm signature in thermal infrared imagery, resembling a surface feature of turbulent katabatic flow typically ascribed to the RAS. Strategically placed AWS sites allow assessment of model performance within and outside of the RAS signature. AMPS provides realistic simulation of conditions aloft but experiences problems at low levels due to issues with the model PBL physics. Key meteorological features of this case study, within the context of previous studies on longer time scales, are inferred to be common occurrences. The assumption that warm thermal infrared signatures are surface features is found to be too restrictive.


Sign in / Sign up

Export Citation Format

Share Document