Generalized two‐pass three‐dimensional migration for imaging steep dips in vertically inhomogeneous media

Geophysics ◽  
1989 ◽  
Vol 54 (5) ◽  
pp. 544-554 ◽  
Author(s):  
Naide Pan ◽  
William S. French

Conventional two‐pass 3-D time migration is exactly equivalent to full 3-D time migration in a homogeneous medium. For vertically inhomogeneous media representing typical earth velocities, however, conventional two‐pass 3-D migration fails to correctly image dips beyond about 45 degrees. This failure is the result of an inherent velocity error incurred during the first pass of a two‐pass 3-D migration. For a vertically inhomogeneous medium, the theory of residual migration can be combined with the results for homogeneous media to derive a series of successive two‐pass migration stages which are equivalent to a full 3-D migration. Each stage of this generalized two‐pass 3-D migration is implemented using an appropriate constant migration velocity. In practice, the required number of two‐pass stages can be reduced to a computationally manageable few; and the I/O can be reduced by one‐third to one‐half of that required using a straightforward application of repeated two‐pass migrations. This procedure allows existing 2-D migration programs to be upgraded to steep‐dip 3-D migration programs by use of a simple I/O structure. Any of the basic 2-D migration algorithms can be used, but we have employed a 50-degree finite‐difference algorithm. In addition, generalized two‐pass 3-D migration overcomes the dip limitations of the underlying 2-D finite‐difference migration algorithm for the same reasons that cascaded 2-D migration extends the dip range of 2-D migration algorithms. Synthetic data examples clearly show the success of this method in imaging steep dips in vertically inhomogeneous media.

Geophysics ◽  
1990 ◽  
Vol 55 (9) ◽  
pp. 1166-1182 ◽  
Author(s):  
Irshad R. Mufti

Finite‐difference seismic models are commonly set up in 2-D space. Such models must be excited by a line source which leads to different amplitudes than those in the real data commonly generated from a point source. Moreover, there is no provision for any out‐of‐plane events. These problems can be eliminated by using 3-D finite‐difference models. The fundamental strategy in designing efficient 3-D models is to minimize computational work without sacrificing accuracy. This was accomplished by using a (4,2) differencing operator which ensures the accuracy of much larger operators but requires many fewer numerical operations as well as significantly reduced manipulation of data in the computer memory. Such a choice also simplifies the problem of evaluating the wave field near the subsurface boundaries of the model where large operators cannot be used. We also exploited the fact that, unlike the real data, the synthetic data are free from ambient noise; consequently, one can retain sufficient resolution in the results by optimizing the frequency content of the source signal. Further computational efficiency was achieved by using the concept of the exploding reflector which yields zero‐offset seismic sections without the need to evaluate the wave field for individual shot locations. These considerations opened up the possibility of carrying out a complete synthetic 3-D survey on a supercomputer to investigate the seismic response of a large‐scale structure located in Oklahoma. The analysis of results done on a geophysical workstation provides new insight regarding the role of interference and diffraction in the interpretation of seismic data.


Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Zhengxin Dong ◽  
George A. McMechan

A three‐dimensional (3-D) prestack reverse‐time migration algorithm for common‐source P‐wave data from anisotropic media is developed and illustrated by application to synthetic data. Both extrapolation of the data and computation of the excitation‐time imaging condition are implemented using a second‐order finite‐ difference solution of the 3-D anisotropic scalar‐wave equation. Poorly focused, distorted images are obtained if data from anisotropic media are migrated using isotropic extrapolation; well focused, clear images are obtained using anisotropic extrapolation. A priori estimation of the 3-D anisotropic velocity distribution is required. Zones of anomalous, directionally dependent reflectivity associated with anisotropic fracture zones are detectable in both the 3-D common‐ source data and the corresponding migrated images.


Geophysics ◽  
1991 ◽  
Vol 56 (9) ◽  
pp. 1412-1422
Author(s):  
Alvin K. Benson

An explicit, unconditionally stable, finite‐difference depth migration and modeling algorithm is formulated and implemented for the fifteen‐degree wave equation in poststack, directional (rotational), and prestack modes for inhomogeneous media. It is about two times faster than implicit schemes. The simplicity, unconditional stability, and speed of the algorithm are appealing for numerous applications, especially prestack and three‐dimensional data sets.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. S93-S101 ◽  
Author(s):  
Andrej Bóna

Standard migration techniques require a velocity model. A new and fast prestack time migration method is presented that does not require a velocity model as an input. The only input is a shot gather, unlike other velocity-independent migrations that also require input of data in other gathers. The output of the presented migration is a time-migrated image and the migration velocity model. The method uses the first and second derivatives of the traveltimes with respect to the location of the receiver. These attributes are estimated by computing the gradient of the amplitude in a shot gather. The assumptions of the approach are a laterally slowly changing velocity and reflectors with small curvatures; the dip of the reflector can be arbitrary. The migration velocity corresponds to the root mean square (rms) velocity for laterally homogeneous media for near offsets. The migration expressions for 2D and 3D cases are derived from a simple geometrical construction considering the image of the source. The strengths and weaknesses of the methods are demonstrated on synthetic data. At last, the applicability of the method is discussed by interpreting the migration velocity in terms of the Taylor expansion of the traveltime around the zero offset.


2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


Sign in / Sign up

Export Citation Format

Share Document