Crosshole seismics using vertical eigenstates

Geophysics ◽  
1990 ◽  
Vol 55 (7) ◽  
pp. 815-820 ◽  
Author(s):  
David M. Pai

This paper introduces the concept of vertical eigenstates to crosshole data analysis. In surface seismics, plane waves have played a fundamental role in many applications. This paper points out that for crosshole seismics, vertical eigenstates play a similar role. The vertical eigenstates separate the wave equation, and thus in terms of vertical eigenstate expansion the solution is a linear combination of modes, each mode traveling sideways with a distinct phase velocity. As a result, the vertical eigenstates form a natural set of basis functions for solution and data expansion, with potential applications to modeling, migration, and inversion.

Author(s):  
Y Xu ◽  
B Liu ◽  
J Liu ◽  
S Riemenschneider

Empirical mode decomposition (EMD) is a powerful tool for analysis of non-stationary and nonlinear signals, and has drawn significant attention in various engineering application areas. This paper presents a finite element-based EMD method for two-dimensional data analysis. Specifically, we represent the local mean surface of the data, a key step in EMD, as a linear combination of a set of two-dimensional linear basis functions smoothed with bi-cubic spline interpolation. The coefficients of the basis functions in the linear combination are obtained from the local extrema of the data using a generalized low-pass filter. By taking advantage of the principle of finite-element analysis, we develop a fast algorithm for implementation of the EMD. The proposed method provides an effective approach to overcome several challenging difficulties in extending the original one-dimensional EMD to the two-dimensional EMD. Numerical experiments using both simulated and practical texture images show that the proposed method works well.


We introduce a method for constructing solutions of homogeneous partial differential equations. This method can be used to construct the usual, well-known, separable solutions of the wave equation, but it also easily gives the non-separable localized wave solutions. These solutions exhibit a degree of focusing about the propagation axis that is dependent on a free parameter, and have many important potential applications. The method is based on constructing the space-time Fourier transform of a function so that it satisfies the transformed partial differential equation. We also apply the method to construct localized wave solutions of the wave equation in a lossy infinite medium, and of the Klein-Gordon equation. The localized wave solutions of these three equations differ somewhat, and we discuss these differences. A discussion of the properties of the localized waves, and of experiments to launch them, is included in the Appendix.


2017 ◽  
Vol 21 (3) ◽  
pp. 835-866 ◽  
Author(s):  
Meng Wu ◽  
Bernard Mourrain ◽  
André Galligo ◽  
Boniface Nkonga

AbstractMotivated by the magneto hydrodynamic (MHD) simulation for Tokamaks with Isogeometric analysis, we present splines defined over a rectangular mesh with a complex topological structure, i.e., with extraordinary vertices. These splines are piecewise polynomial functions of bi-degree (d,d) and parameter continuity. And we compute their dimension and exhibit basis functions called Hermite bases for bicubic spline spaces. We investigate their potential applications for solving partial differential equations (PDEs) over a physical domain in the framework of Isogeometric analysis. For instance, we analyze the property of approximation of these spline spaces for the L2-norm; we show that the optimal approximation order and numerical convergence rates are reached by setting a proper parameterization, although the fact that the basis functions are singular at extraordinary vertices.


1993 ◽  
Vol 36 (1) ◽  
pp. 69-85 ◽  
Author(s):  
Rong-Qing Jia ◽  
Charles A. Micchelli

We investigate linear independence of integer translates of a finite number of compactly supported functions in two cases. In the first case there are no restrictions on the coefficients that may occur in dependence relations. In the second case the coefficient sequences are restricted to be in some lp space (1 ≦ p ≦ ∞) and we are interested in bounding their lp-norms in terms of the Lp-norm of the linear combination of integer translates of the basis functions which uses these coefficients. In both cases we give necessary and sufficient conditions for linear independence of integer translates of the basis functions. Our characterization is based on a study of certain systems of linear partial difference and differential equations, which are of independent interest.


Author(s):  
Keval S. Ramani ◽  
Chinedum E. Okwudire

Abstract There is growing interest in the use of the filtered basis functions (FBF) approach to track linear systems, especially nonminimum phase (NMP) plants, because of the distinct advantages it presents as compared to other popular methods in the literature. The FBF approach expresses the control input to the plant as a linear combination of basis functions. The basis functions are forward filtered through the plant dynamics and the coefficients of the linear combination are selected such that the tracking error is minimized. This paper proposes a two-stage robust filtered basis functions approach for tracking control of linear systems in the presence of known uncertainty. In the first stage, the nominal model for filtering the basis functions is selected such that a Frobenius norm metric which considers the known uncertainty is minimized. In the second stage, an optimal set of basis functions is selected such that the effect of uncertainty is minimized for the nominal model selected in the first stage. Experiments on a 3D printer, demonstrate up to 7 times improvement in tracking performance using the proposed method as compared to the standard FBF approach.


Author(s):  
Wen-I Liao ◽  
Tsung-Jen Teng ◽  
Shiang-Jung Wang

This paper develops the transition matrix formalism for scattering from an three-dimensional alluvium on an elastic half-space. Betti’s third identity is employed to establish orthogonality conditions among basis functions that are Lamb’s singular wave functions. The total displacements and associated tractions exterior and interior to the surface are expanded in a Rayleigh series. The boundary conditions are applied and the T-matrix is derived. A linear transformation is utilized to construct a set of orthogonal basis functions. The transformed T-matrix is related to the scattering matrix and it is shown that the scattering matrix is symmetric and unitary and that the T-matrix is symmetric. Typical numerical results obtained by incident plane waves for verification are presented.


Sign in / Sign up

Export Citation Format

Share Document