Two-Stage Robust Tracking Controller for Linear Systems With Known Uncertainty Using Filtered Basis Functions

Author(s):  
Keval S. Ramani ◽  
Chinedum E. Okwudire

Abstract There is growing interest in the use of the filtered basis functions (FBF) approach to track linear systems, especially nonminimum phase (NMP) plants, because of the distinct advantages it presents as compared to other popular methods in the literature. The FBF approach expresses the control input to the plant as a linear combination of basis functions. The basis functions are forward filtered through the plant dynamics and the coefficients of the linear combination are selected such that the tracking error is minimized. This paper proposes a two-stage robust filtered basis functions approach for tracking control of linear systems in the presence of known uncertainty. In the first stage, the nominal model for filtering the basis functions is selected such that a Frobenius norm metric which considers the known uncertainty is minimized. In the second stage, an optimal set of basis functions is selected such that the effect of uncertainty is minimized for the nominal model selected in the first stage. Experiments on a 3D printer, demonstrate up to 7 times improvement in tracking performance using the proposed method as compared to the standard FBF approach.

Author(s):  
Keval S. Ramani ◽  
Molong Duan ◽  
Chinedum E. Okwudire ◽  
A. Galip Ulsoy

Abstract Accurate tracking of nonminimum phase (NMP) systems is well known to require large amounts of control effort. It is, therefore, of practical value to minimize the effort needed to achieve a desired level of tracking accuracy for NMP systems. There is growing interest in the use of the filtered basis functions (FBF) approach for tracking the control of linear NMP systems because of distinct performance advantages it has over other methods. The FBF approach expresses the control input as a linear combination of user-defined basis functions. The basis functions are forward filtered through the dynamics of the plant, and the coefficients are selected such that the tracking error is minimized. There is a wide variety of basis functions that can be used with the FBF approach, but there has been no work to date on how to select the best set of basis functions. Toward selecting the best basis functions, the Frobenius norm of the lifted system representation (LSR) of dynamics is proposed as an excellent metric for evaluating the performance of linear time varying (LTV) discrete-time tracking controllers, like FBF, independent of the desired trajectory to be tracked. Using the metric, an optimal set of basis functions that minimize the control effort without sacrificing tracking accuracy is proposed. The optimal set of basis functions is shown in simulations and experiments to significantly reduce control effort while maintaining or improving tracking accuracy compared to popular basis functions, like B-splines.


Author(s):  
Keval Ramani ◽  
Chinedum Okwudire

Abstract There is growing interest in the use of the filtered basis functions (FBF) approach to track linear systems, especially nonminimum phase (NMP) plants, because of its distinct advantages compared to other tracking control methods in the literature. The FBF approach expresses the control input to the plant as a linear combination of basis functions with unknown coefficients. The basis functions are forward filtered through the plant dynamics and the coefficients are selected such that tracking error is minimized. Similar to other feedforward control methods, the tracking accuracy of the FBF approach deteriorates in the presence of uncertainties. However, unlike other methods, the FBF approach presents flexibility in terms of the choice of the basis functions, which can be used to improve its accuracy. This paper analyzes the effect of the choice of the basis functions on the tracking accuracy of FBF, in the presence of uncertainties, using the Frobenius norm of the lifted system representation of FBF's error dynamics. Based on the analysis, a methodology for optimal selection of basis functions to maximize robustness is proposed, together with an approach to avoid large control effort when it is applied to NMP systems. The basis functions resulting from this process are called robust basis functions. Applied experimentally to a desktop 3D printer with uncertain NMP dynamics, up to 48% improvement in tracking accuracy is achieved using the proposed robust basis functions compared to B-splines, while utilizing much less control effort.


2020 ◽  
Vol 53 (2) ◽  
pp. 1596-1601
Author(s):  
Jun Zhao ◽  
Jing Na ◽  
Guanbin Gao ◽  
Shichang Han ◽  
Qiang Chen ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Alejandra Ríos ◽  
Eusebio E. Hernández ◽  
S. Ivvan Valdez

This paper introduces a two-stage method based on bio-inspired algorithms for the design optimization of a class of general Stewart platforms. The first stage performs a mono-objective optimization in order to reach, with sufficient dexterity, a regular target workspace while minimizing the elements’ lengths. For this optimization problem, we compare three bio-inspired algorithms: the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The second stage looks for the most suitable gains of a Proportional Integral Derivative (PID) control via the minimization of two conflicting objectives: one based on energy consumption and the tracking error of a target trajectory. To this effect, we compare two multi-objective algorithms: the Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic Algorithm-III (NSGA-III). The main contributions lie in the optimization model, the proposal of a two-stage optimization method, and the findings of the performance of different bio-inspired algorithms for each stage. Furthermore, we show optimized designs delivered by the proposed method and provide directions for the best-performing algorithms through performance metrics and statistical hypothesis tests.


Sign in / Sign up

Export Citation Format

Share Document