Multidomain analysis and wavefield separation of cross‐well seismic data

Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 27-35 ◽  
Author(s):  
James W. Rector ◽  
Spyros K. Lazaratos ◽  
Jerry M. Harris ◽  
Mark Van Schaack

While cross‐well traveltime tomography can be used to image the subsurface between well pairs, the use of cross‐well reflections is necessary to image at or below the base of wells, where the reservoir unit is often located. One approach to imaging cross‐well reflections is to treat each cross‐well gather as an offset VSP and perform wavefield separation of direct and reflected arrivals prior to stacking or migration. Wavefield separation of direct and reflected arrivals in VSP is accomplished by separating the total wavefield into up and downgoing components. Since reflectors can exist both above and below the borehole wavefield, separation of cross‐well data into up‐ and downgoing components does not achieve separation of direct and reflected arrivals. In our technique, we use moveout filters applied in the domain of common vertical source/receiver offset to extract reflected arrivals from the complex total wavefield of a cross‐well seismic data set. The multiple domains available for filtering and analysis make cross‐well data more akin to multifold surface seismic data, which can also be filtered in multiple domains, rather than typical VSP data, where there is only one domain (common source) in which to filter. Wavefield separation of cross‐well data is shown to be particularly effective against multiples when moveout filters are applied in common‐offset space.

Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


2017 ◽  
Vol 5 (4) ◽  
pp. T531-T544
Author(s):  
Ali H. Al-Gawas ◽  
Abdullatif A. Al-Shuhail

The late Carboniferous clastic Unayzah-C in eastern central Saudi Arabia is a low-porosity, possibly fractured reservoir. Mapping the Unayzah-C is a challenge due to the low signal-to-noise ratio (S/N) and limited bandwidth in the conventional 3D seismic data. A related challenge is delineating and characterizing fracture zones within the Unayzah-C. Full-azimuth 3D broadband seismic data were acquired using point receivers, low-frequency sweeps down to 2 Hz, and 6 km patch geometry. The data indicate significant enhancement in continuity and resolution of the reflection data, leading to improved mapping of the Unayzah-C. Because the data set has a rectangular patch geometry with full inline offsets to 6000 m, using amplitude variation with offset and azimuth (AVOA) may be effective to delineate and characterize fracture zones within Unayzah-A and Unayzah-C. The study was undertaken to determine the improvement of wide-azimuth seismic data in fracture detection in clastic reservoirs. The results were validated with available well data including borehole images, well tests, and production data in the Unayzah-A. There are no production data or borehole images within the Unayzah-C. For validation, we had to refer to a comparison of alternative seismic fracture detection methods, mainly curvature and coherence. Anisotropy was found to be weak, which may be due to noise, clastic lithology, and heterogeneity of the reservoirs, in both reservoirs except for along the western steep flank of the study area. These may correspond to some north–south-trending faults suggested by circulation loss and borehole image data in a few wells. The orientation of the long axis of the anisotropy ellipses is northwest–southeast, and it is not in agreement with the north–south structural trend. No correlation was found among the curvature, coherence, and AVOA in Unayzah-A or Unayzah-C. Some possible explanations for the low correlation between the AVOA ellipticity and the natural fractures are a noisy data set, overburden anisotropy, heterogeneity, granulation seams, and deformation.


Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. D27-D36 ◽  
Author(s):  
Andrey Bakulin ◽  
Marta Woodward ◽  
Dave Nichols ◽  
Konstantin Osypov ◽  
Olga Zdraveva

Tilted transverse isotropy (TTI) is increasingly recognized as a more geologically plausible description of anisotropy in sedimentary formations than vertical transverse isotropy (VTI). Although model-building approaches for VTI media are well understood, similar approaches for TTI media are in their infancy, even when the symmetry-axis direction is assumed known. We describe a tomographic approach that builds localized anisotropic models by jointly inverting surface-seismic and well data. We present a synthetic data example of anisotropic tomography applied to a layered TTI model with a symmetry-axis tilt of 45 degrees. We demonstrate three scenarios for constraining the solution. In the first scenario, velocity along the symmetry axis is known and tomography inverts for Thomsen’s [Formula: see text] and [Formula: see text] parame-ters. In the second scenario, tomography inverts for [Formula: see text], [Formula: see text], and velocity, using surface-seismic data and vertical check-shot traveltimes. In contrast to the VTI case, both these inversions are nonunique. To combat nonuniqueness, in the third scenario, we supplement check-shot and seismic data with the [Formula: see text] profile from an offset well. This allows recovery of the correct profiles for velocity along the symmetry axis and [Formula: see text]. We conclude that TTI is more ambiguous than VTI for model building. Additional well data or rock-physics assumptions may be required to constrain the tomography and arrive at geologically plausible TTI models. Furthermore, we demonstrate that VTI models with atypical Thomsen parameters can also fit the same joint seismic and check-shot data set. In this case, although imaging with VTI models can focus the TTI data and match vertical event depths, it leads to substantial lateral mispositioning of the reflections.


2017 ◽  
Vol 5 (3) ◽  
pp. SJ41-SJ48 ◽  
Author(s):  
Jesse Lomask ◽  
Luisalic Hernandez ◽  
Veronica Liceras ◽  
Amit Kumar ◽  
Anna Khadeeva

Natural fracture networks (NFNs) are used in unconventional reservoir simulators to model pressure and saturation changes in fractured rocks. These fracture networks are often derived from well data or well data combined with a variety of seismic-derived attributes to provide spatial information away from the wells. In cases in which there is a correlation between faults and fractures, the use of a fault indicator can provide additional constraints on the spatial location of the natural fractures. We use a fault attribute based on fault-oriented semblance as a secondary conditioner for the generation of NFNs. In addition, the distribution of automatically extracted faults from the fault-oriented semblance is used to augment the well-derived statistics for natural fracture generation. Without the benefit of this automated fault-extraction solution, to manually extract the fault-statistical information from the seismic data would be prohibitively tedious and time consuming. Finally, we determine, on a 3D field unconventional data set, that the use of fault-oriented semblance results in simulations that are significantly more geologically reasonable.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. WA13-WA26 ◽  
Author(s):  
Jing Sun ◽  
Sigmund Slang ◽  
Thomas Elboth ◽  
Thomas Larsen Greiner ◽  
Steven McDonald ◽  
...  

For economic and efficiency reasons, blended acquisition of seismic data is becoming increasingly commonplace. Seismic deblending methods are computationally demanding and normally consist of multiple processing steps. Furthermore, the process of selecting parameters is not always trivial. Machine-learning-based processing has the potential to significantly reduce processing time and to change the way seismic deblending is carried out. We have developed a data-driven deep-learning-based method for fast and efficient seismic deblending. The blended data are sorted from the common-source to the common-channel domain to transform the character of the blending noise from coherent events to incoherent contributions. A convolutional neural network is designed according to the special characteristics of seismic data and performs deblending with results comparable to those obtained with conventional industry deblending algorithms. To ensure authenticity, the blending was performed numerically and only field seismic data were used, including more than 20,000 training examples. After training and validating the network, seismic deblending can be performed in near real time. Experiments also indicate that the initial signal-to-noise ratio is the major factor controlling the quality of the final deblended result. The network is also demonstrated to be robust and adaptive by using the trained model to first deblend a new data set from a different geologic area with a slightly different delay time setting and second to deblend shots with blending noise in the top part of the record.


Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. D37-D45 ◽  
Author(s):  
Andrey Bakulin ◽  
Marta Woodward ◽  
Dave Nichols ◽  
Konstantin Osypov ◽  
Olga Zdraveva

We develop a concept of localized seismic grid tomography constrained by well information and apply it to building vertically transversely isotropic (VTI) velocity models in depth. The goal is to use a highly automated migration velocity analysis to build anisotropic models that combine optimal image focusing with accurate depth positioning in one step. We localize tomography to a limited volume around the well and jointly invert the surface seismic and well data. Well information is propagated into the local volume by using the method of preconditioning, whereby model updates are shaped to follow geologic layers with spatial smoothing constraints. We analyze our concept with a synthetic data example of anisotropic tomography applied to a 1D VTI model. We demonstrate four cases of introducing additionalinformation. In the first case, vertical velocity is assumed to be known, and the tomography inverts only for Thomsen’s [Formula: see text] and [Formula: see text] profiles using surface seismic data alone. In the second case, tomography simultaneously inverts for all three VTI parameters, including vertical velocity, using a joint data set that consists of surface seismic data and vertical check-shot traveltimes. In the third and fourth cases, sparse depth markers and walkaway vertical seismic profiling (VSP) are used, respectively, to supplement the seismic data. For all four examples, tomography reliably recovers the anisotropic velocity field up to a vertical resolution comparable to that of the well data. Even though walkaway VSP has the additional dimension of angle or offset, it offers no further increase in this resolution limit. Anisotropic tomography with well constraints has multiple advantages over other approaches and deserves a place in the portfolio of model-building tools.


Geophysics ◽  
1993 ◽  
Vol 58 (11) ◽  
pp. 1662-1675
Author(s):  
Ronald C. Hinds ◽  
Richard Kuzmiski ◽  
Neil L. Anderson ◽  
Barry R. Richards

The deltaic sandstones of the basal Kiskatinaw Formation (Stoddard Group, upper Mississippian) were preferentially deposited within structural lows in a regime characterized by faulting and structural subsidence. In the Fort St. John Graben area, northwest Alberta, Canada, these sandstone facies can form reservoirs where they are laterally sealed against the flanks of upthrown fault blocks. Exploration for basal Kiskatinaw reservoirs generally entails the acquisition and interpretation of surface seismic data prior to drilling. These data are used to map the grabens in which these sandstones were deposited, and the horst blocks which act as lateral seals. Subsequent to drilling, vertical seismic profile (VSP) surveys can be run. These data supplement the surface seismic and well log control in that: 1) VSP data can be directly correlated to surface seismic data. As a result, the surface seismic control can be accurately tied to the subsurface geology; 2) Multiples, identified on VSP data, can be deconvolved out of the surface seismic data; and 3) The subsurface, in the vicinity of the borehole, is more clearly resolved on the VSP data than on surface seismic control. On the Fort St. John Graben data set incorporated into this paper, faults which are not well resolved on the surface seismic data, are better delineated on VSP data. The interpretive processing of these data illustrate the use of the seismic profiling technique in the search for hydrocarbons in structurally complex areas.


Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. V79-V86 ◽  
Author(s):  
Kurang Mehta ◽  
Andrey Bakulin ◽  
Jonathan Sheiman ◽  
Rodney Calvert ◽  
Roel Snieder

The virtual source method has recently been proposed to image and monitor below complex and time-varying overburden. The method requires surface shooting recorded at downhole receivers placed below the distorting or changing part of the overburden. Redatuming with the measured Green’s function allows the reconstruction of a complete downhole survey as if the sources were also buried at the receiver locations. There are still some challenges that need to be addressed in the virtual source method, such as limited acquisition aperture and energy coming from the overburden. We demonstrate that up-down wavefield separation can substantially improve the quality of virtual source data. First, it allows us to eliminate artifacts associated with the limited acquisition aperture typically used in practice. Second, it allows us to reconstruct a new optimized response in the absence of downgoing reflections and multiples from the overburden. These improvements are illustrated on a synthetic data set of a complex layered model modeled after the Fahud field in Oman, and on ocean-bottom seismic data acquired in the Mars field in the deepwater Gulf of Mexico.


2020 ◽  
Vol 8 (4) ◽  
pp. SS113-SS127
Author(s):  
Kaijun Xu ◽  
Yaoguo Li

We carried out a multigeophysical data joint interpretation to image volcanic units in an area where seismic imaging is difficult due to complicated and variable volcanic lithology. The gravity and magnetic methods can be effective in imaging the volcanic units because volcanic rocks are often strongly magnetic and have large density contrasts. Gravity and magnetic data have good lateral resolution, but they are faced with challenges in defining the depth extent. Although seismic data make for poor imaging in volcanic rocks, they can provide a reliable stratigraphic structure above volcanic rocks to improve the vertical resolution of the gravity and magnetic method. We have developed an integrated interpretation method that combines the advantages of seismic, gravity, magnetic, and well data to generate a 3D quasigeology model to image volcanic units. We first use seismic data to obtain the stratigraphic boundaries, and then we apply an anomaly stripping method based on a seismic-derived structure to extract residual gravity and magnetic anomaly produced by volcanic rocks. We further perform the 3D gravity and magnetic amplitude inversion to recover the distribution of the density and effective susceptibility. We perform geology differentiation using the inverted density and effective magnetic susceptibility to identify the spatial distribution of four groups of volcanic units. The results show that the integrated interpretation of multigeophysical data can significantly decrease the uncertainty associated with any single data set and yield more reliable imaging of lateral and vertical distribution of volcanic rocks.


2019 ◽  
Vol 7 (2) ◽  
pp. T383-T408 ◽  
Author(s):  
Francisco J. Bataller ◽  
Neil McDougall ◽  
Andrea Moscariello

Ancient glacial sediments form major hydrocarbon plays in several parts of the world; most notably, North Africa, Latin America, and the Middle East. We have described a methodology for reconstructing broad-scale paleogeographies in just such a depositional system, using an extensive subsurface data set from the uppermost Ordovician glacial sediments of the Murzuq Basin of southwest Libya. Our workflow begins with the analysis of a large, high-quality 3D seismic data set, to understand the frequency content. Subsequently, optimum frequency bands are extracted, after applying spectral decomposition, and then recombined into an R (red) G (green) B (blue) blended cube. This volume is then treated as an image within which paleomorphological features can be distinguished and compared with modern glacial analogs. Mapping at different depths (time slices) of these features is then tied, by integration with core and image-log sedimentology, to specific depositional environments defined within the framework of a facies scheme developed using the well data and published outcrop studies. These depositional environments are extrapolated into areas with little or no well data using the spectral decomposition as a framework, always taking into account the significant difference in vertical resolution between the seismic data set and core-scale descriptions. The result of this methodology is a set of calibrated maps, at three different time depths (two-way time travel), indicating paleogeographic reconstructions of the glacial depositional environments in the study area and the evolution through time (at different depths/time slices 2D + 1) of these glacial settings.


Sign in / Sign up

Export Citation Format

Share Document