scholarly journals A convolutional neural network approach to deblending seismic data

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. WA13-WA26 ◽  
Author(s):  
Jing Sun ◽  
Sigmund Slang ◽  
Thomas Elboth ◽  
Thomas Larsen Greiner ◽  
Steven McDonald ◽  
...  

For economic and efficiency reasons, blended acquisition of seismic data is becoming increasingly commonplace. Seismic deblending methods are computationally demanding and normally consist of multiple processing steps. Furthermore, the process of selecting parameters is not always trivial. Machine-learning-based processing has the potential to significantly reduce processing time and to change the way seismic deblending is carried out. We have developed a data-driven deep-learning-based method for fast and efficient seismic deblending. The blended data are sorted from the common-source to the common-channel domain to transform the character of the blending noise from coherent events to incoherent contributions. A convolutional neural network is designed according to the special characteristics of seismic data and performs deblending with results comparable to those obtained with conventional industry deblending algorithms. To ensure authenticity, the blending was performed numerically and only field seismic data were used, including more than 20,000 training examples. After training and validating the network, seismic deblending can be performed in near real time. Experiments also indicate that the initial signal-to-noise ratio is the major factor controlling the quality of the final deblended result. The network is also demonstrated to be robust and adaptive by using the trained model to first deblend a new data set from a different geologic area with a slightly different delay time setting and second to deblend shots with blending noise in the top part of the record.

2020 ◽  
Vol 39 (9) ◽  
pp. 654-660 ◽  
Author(s):  
Srikanth Jakkampudi ◽  
Junzhu Shen ◽  
Weichen Li ◽  
Ayush Dev ◽  
Tieyuan Zhu ◽  
...  

Seismic data for studying the near surface have historically been extremely sparse in cities, limiting our ability to understand small-scale processes, locate small-scale geohazards, and develop earthquake hazard microzonation at the scale of buildings. In recent years, distributed acoustic sensing (DAS) technology has enabled the use of existing underground telecommunications fibers as dense seismic arrays, requiring little manual labor or energy to maintain. At the Fiber-Optic foR Environmental SEnsEing array under Pennsylvania State University, we detected weak slow-moving signals in pedestrian-only areas of campus. These signals were clear in the 1 to 5 Hz range. We verified that they were caused by footsteps. As part of a broader scheme to remove and obscure these footsteps in the data, we developed a convolutional neural network to detect them automatically. We created a data set of more than 4000 windows of data labeled with or without footsteps for this development process. We describe improvements to the data input and architecture, leading to approximately 84% accuracy on the test data. Performance of the network was better for individual walkers and worse when there were multiple walkers. We believe the privacy concerns of individual walkers are likely to be highest priority. Community buy-in will be required for these technologies to be deployed at a larger scale. Hence, we should continue to proactively develop the tools to ensure city residents are comfortable with all geophysical data that may be acquired.


2020 ◽  
Vol 221 (2) ◽  
pp. 1211-1225 ◽  
Author(s):  
Y X Zhao ◽  
Y Li ◽  
B J Yang

SUMMARY One of the difficulties in desert seismic data processing is the large spectral overlap between noise and reflected signals. Existing denoising algorithms usually have a negative impact on the resolution and fidelity of seismic data when denoising, which is not conducive to the acquisition of underground structures and lithology related information. Aiming at this problem, we combine traditional method with deep learning, and propose a new feature extraction and denoising strategy based on a convolutional neural network, namely VMDCNN. In addition, we also build a training set using field seismic data and synthetic seismic data to optimize network parameters. The processing results of synthetic seismic records and field seismic records show that the proposed method can effectively suppress the noise that shares the same frequency band with the reflected signals, and the reflected signals have almost no energy loss. The processing results meet the requirements of high signal-to-noise ratio, high resolution and high fidelity for seismic data processing.


2019 ◽  
Vol 7 (3) ◽  
pp. SE161-SE174 ◽  
Author(s):  
Reetam Biswas ◽  
Mrinal K. Sen ◽  
Vishal Das ◽  
Tapan Mukerji

An inversion algorithm is commonly used to estimate the elastic properties, such as P-wave velocity ([Formula: see text]), S-wave velocity ([Formula: see text]), and density ([Formula: see text]) of the earth’s subsurface. Generally, the seismic inversion problem is solved using one of the traditional optimization algorithms. These algorithms start with a given model and update the model at each iteration, following a physics-based rule. The algorithm is applied at each common depth point (CDP) independently to estimate the elastic parameters. Here, we have developed a technique using the convolutional neural network (CNN) to solve the same problem. We perform two critical steps to take advantage of the generalization capability of CNN and the physics to generate synthetic data for a meaningful representation of the subsurface. First, rather than using CNN as in a classification type of problem, which is the standard approach, we modified the CNN to solve a regression problem to estimate the elastic properties. Second, again unlike the conventional CNN, which is trained by supervised learning with predetermined label (elastic parameter) values, we use the physics of our forward problem to train the weights. There are two parts of the network: The first is the convolution network, which takes the input as seismic data to predict the elastic parameters, which is the desired intermediate result. In the second part of the network, we use wave-propagation physics and we use the output of the CNN to generate the predicted seismic data for comparison with the actual data and calculation of the error. This error between the true and predicted seismograms is then used to calculate gradients, and update the weights in the CNN. After the network is trained, only the first part of the network can be used to estimate elastic properties at remaining CDPs directly. We determine the application of physics-guided CNN on prestack and poststack inversion problems. To explain how the algorithm works, we examine it using a conventional CNN workflow without any physics guidance. We first implement the algorithm on a synthetic data set for prestack and poststack data and then apply it to a real data set from the Cana field. In all the training examples, we use a maximum of 20% of data. Our approach offers a distinct advantage over a conventional machine-learning approach in that we circumvent the need for labeled data sets for training.


2020 ◽  
Vol 52 (12) ◽  
pp. 590-601
Author(s):  
Emrah Irmak

In this paper, two novel, powerful, and robust convolutional neural network (CNN) architectures are designed and proposed for two different classification tasks using publicly available data sets. The first architecture is able to decide whether a given chest X-ray image of a patient contains COVID-19 or not with 98.92% average accuracy. The second CNN architecture is able to divide a given chest X-ray image of a patient into three classes (COVID-19 versus normal versus pneumonia) with 98.27% average accuracy. The hyperparameters of both CNN models are automatically determined using Grid Search. Experimental results on large clinical data sets show the effectiveness of the proposed architectures and demonstrate that the proposed algorithms can overcome the disadvantages mentioned above. Moreover, the proposed CNN models are fully automatic in terms of not requiring the extraction of diseased tissue, which is a great improvement of available automatic methods in the literature. To the best of the author’s knowledge, this study is the first study to detect COVID-19 disease from given chest X-ray images, using CNN, whose hyperparameters are automatically determined by the Grid Search. Another important contribution of this study is that it is the first CNN-based COVID-19 chest X-ray image classification study that uses the largest possible clinical data set. A total of 1,524 COVID-19, 1,527 pneumonia, and 1524 normal X-ray images are collected. It is aimed to collect the largest number of COVID-19 X-ray images that exist in the literature until the writing of this research paper.


2021 ◽  
Vol 7 (2) ◽  
pp. 356-362
Author(s):  
Harry Coppock ◽  
Alex Gaskell ◽  
Panagiotis Tzirakis ◽  
Alice Baird ◽  
Lyn Jones ◽  
...  

BackgroundSince the emergence of COVID-19 in December 2019, multidisciplinary research teams have wrestled with how best to control the pandemic in light of its considerable physical, psychological and economic damage. Mass testing has been advocated as a potential remedy; however, mass testing using physical tests is a costly and hard-to-scale solution.MethodsThis study demonstrates the feasibility of an alternative form of COVID-19 detection, harnessing digital technology through the use of audio biomarkers and deep learning. Specifically, we show that a deep neural network based model can be trained to detect symptomatic and asymptomatic COVID-19 cases using breath and cough audio recordings.ResultsOur model, a custom convolutional neural network, demonstrates strong empirical performance on a data set consisting of 355 crowdsourced participants, achieving an area under the curve of the receiver operating characteristics of 0.846 on the task of COVID-19 classification.ConclusionThis study offers a proof of concept for diagnosing COVID-19 using cough and breath audio signals and motivates a comprehensive follow-up research study on a wider data sample, given the evident advantages of a low-cost, highly scalable digital COVID-19 diagnostic tool.


Sign in / Sign up

Export Citation Format

Share Document