Estimation of the discrete Fourier transform, a linear inversion approach

Geophysics ◽  
1996 ◽  
Vol 61 (4) ◽  
pp. 1128-1136 ◽  
Author(s):  
Mauricio D. Sacchi ◽  
Tadeusz J. Ulrych

Spatio‐temporal analysis of seismic records is of particular relevance in many geophysical applications, e.g., vertical seismic profiles, plane‐wave slowness estimation in seismographic array processing and in sonar array processing. The goal is to estimate from a limited number of receivers the 2-D spectral signature of a group of events that are recorded on a linear array of receivers. When the spatial coverage of the array is small, conventional f-k analysis based on Fourier transform leads to f-k panels that are dominated by sidelobes. An algorithm that uses a Bayesian approach to design an artifacts‐reduced Fourier transform has been developed to overcome this shortcoming. A by‐product of the method is a high‐resolution periodogram. This extrapolation gives the periodogram that would have been recorded with a longer array of receivers if the data were a limited superposition of monochromatic planes waves. The technique is useful in array processing for two reasons. First, it provides spatial extrapolation of the array (subject to the above data assumption) and second, missing receivers within and outside the aperture are treated as unknowns rather than as zeros. The performance of the technique is illustrated with synthetic examples for both broad‐band and narrow‐band data. Finally, the applicability of the procedure is assessed analyzing the f-k spectral signature of a vertical seismic profile (VSP).

2016 ◽  
Vol 16 (16) ◽  
pp. 10351-10368 ◽  
Author(s):  
Enrico Dammers ◽  
Mathias Palm ◽  
Martin Van Damme ◽  
Corinne Vigouroux ◽  
Dan Smale ◽  
...  

Abstract. Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of −32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (−50 to +100 %).


2021 ◽  
Vol 13 (5) ◽  
pp. 971
Author(s):  
Zhen Gao ◽  
Ying Hou ◽  
Benjamin F. Zaitchik ◽  
Yongzhe Chen ◽  
Weiping Chen

There is an increasing demand for a land surface temperature (LST) dataset with both fine spatial and temporal resolutions due to the key role of LST in the Earth’s land–atmosphere system. Currently, the technique most commonly used to meet the demand is thermal infrared (TIR) remote sensing. However, cloud contamination interferes with TIR transmission through the atmosphere, limiting the potential of space-borne TIR sensors to provide the LST with complete spatio-temporal coverage. To solve this problem, we developed a two-step integrated method to: (i) estimate the 10-km LST with a high spatial coverage from passive microwave (PMW) data using the multilayer perceptron (MLP) model; and (ii) downscale the LST to 1 km and fill the gaps based on the geographically and temporally weighted regression (GTWR) model. Finally, the 1-km all-weather LST for cloudy pixels was fused with Aqua MODIS clear-sky LST via bias correction. This method was applied to produce the all-weather LST products for both daytime and nighttime during the years 2013–2018 in South China. The evaluations showed that the accuracy of the reproduced LST on cloudy days was comparable to that of the MODIS LST in terms of mean absolute error (2.29–2.65 K), root mean square error (2.92–3.25 K), and coefficients of determination (0.82–0.92) against the in situ measurements at four flux stations and ten automatic meteorological stations with various land cover types. The spatial and temporal analysis showed that the MLP-GTWR LST were highly consistent with the MODIS, in situ, and ERA5-Land LST, with the satisfactory ability to present the LST pattern under cloudy conditions. In addition, the MLP-GTWR method outperformed a gap-filling method and another TIR-PMW integrated method due to the local strategy in MLP and the consideration of temporal non-stationarity relationship in GTWR. Therefore, the test of the developed method in the frequently cloudy South China indicates the efficient potential for further application to other humid regions to generate the LST under cloudy condition.


Geophysics ◽  
1987 ◽  
Vol 52 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Liang‐Zie Hu ◽  
George A. McMechan

Vertical seismic profile (VSP) data may be partitioned in a variety of ways by application of wave‐field transformations. These transformations provide insights into the nature of the data and aid in the design of processing operations. Transformations are implemented in a reversible sequence that takes the observed VSP data from the depth‐time (z-t) domain through the slowness‐time intercept (p-τ) domain (by a slant stack), to the slowness‐frequency (p-ω) domain (by a 1-D Fourier transform over τ), to the wavenumber‐frequency (k-ω) domain (by resampling using the Fourier central‐slice theorem), and finally back to the z-t domain (by an inverse 2-D Fourier transform). Multidimensional wave‐field transformations, combined with k-ω, p-ω, and p-τ filtering, can be applied to wave‐field resampling, interpolation, and extrapolation; separation of P-waves and S-waves; separation of upgoing and downgoing waves; and wave‐field decomposition for isolation, identification, and analysis of arrivals.


2009 ◽  
Vol 129 (10) ◽  
pp. 1778-1784
Author(s):  
Yasuaki Uehara ◽  
Keita Tanaka ◽  
Yoshinori Uchikawa ◽  
Bong-Soo Kim

2010 ◽  
Vol 17 (4) ◽  
pp. 770-775
Author(s):  
Ren YANG ◽  
Zhi-Yuan REN ◽  
Qian XU ◽  
Mei-Xia WANG

Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 507 ◽  
Author(s):  
Iván Vizcaíno ◽  
Enrique Carrera ◽  
Margarita Sanromán-Junquera ◽  
Sergio Muñoz-Romero ◽  
José Luis Rojo-Álvarez ◽  
...  

GeoJournal ◽  
2021 ◽  
Author(s):  
R. Nasiri ◽  
S. Akbarpour ◽  
AR. Zali ◽  
N. Khodakarami ◽  
MH. Boochani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document