scholarly journals The offset‐midpoint traveltime pyramid in transversely isotropic media

Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1316-1325 ◽  
Author(s):  
Tariq Alkhalifah

Prestack Kirchhoff time migration for transversely isotropic media with a vertical symmetry axis (VTI media) is implemented using an offset‐midpoint traveltime equation, Cheop’s pyramid equivalent equation for VTI media. The derivation of such an equation for VTI media requires approximations that pertain to high frequency and weak anisotropy. Yet the resultant offset‐midpoint traveltime equation for VTI media is highly accurate for even strong anisotropy. It is also strictly dependent on two parameters: NMO velocity and the anisotropy parameter, η. It reduces to the exact offset‐midpoint traveltime equation for isotropic media when η = 0. In vertically inhomogeneous media, the NMO velocity and η parameters in the offset‐midpoint traveltime equation are replaced by their effective values: the velocity is replaced by the rms velocity and η is given by a more complicated equation that includes summation of the fourth power of velocity.

Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 623-631 ◽  
Author(s):  
Tariq Alkhalifah

When transversely isotropic (VTI) media with vertical symmetry axes are characterized using the zero‐dip normal moveout (NMO) velocity [[Formula: see text]] and the anisotropy parameter ηinstead of Thomsen’s parameters, time‐related processing [moveout correction, dip moveout (DMO), and time migration] become nearly independent of the vertical P- and S-wave velocities ([Formula: see text] and [Formula: see text], respectively). The independence on [Formula: see text] and [Formula: see text] is well within the limits of seismic accuracy, even for relatively strong anisotropy. The dependency on [Formula: see text] and [Formula: see text] reduces even further as the ratio [Formula: see text] decreases. In fact, for [Formula: see text], all time‐related processing depends exactly on only [Formula: see text] and η. This fortunate dependence on two parameters is demonstrated here through analytical derivations of time‐related processing equations in terms of [Formula: see text] and η. The time‐migration dispersion relation, the NMO velocity for dipping events, and the ray‐tracing equations extracted by setting [Formula: see text] (i.e., by considering VTI as acoustic) not only depend solely on [Formula: see text] and η but are much simpler than the counterpart expressions for elastic media. Errors attributed to this use of the acoustic assumption are small and may be neglected. Therefore, as in isotropic media, the acoustic model arising from setting [Formula: see text], although not exactly true for VTI media, can serve as a useful approximation to the elastic model for the kinematics of P-wave data. This approximation can boost the efficiency of imaging and DMO programs for VTI media as well as simplify their description.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1839-1854 ◽  
Author(s):  
Tariq Alkhalifah

P‐wave reflections from horizontal interfaces in transversely isotropic (TI) media have nonhyperbolic moveout. It has been shown that such moveout as well as all time‐related processing in TI media with a vertical symmetry axis (VTI media) depends on only two parameters, [Formula: see text] and η. These two parameters can be estimated from the dip‐moveout behavior of P‐wave surface seismic data. Alternatively, one could use the nonhyperbolic moveout for parameter estimation. The quality of resulting estimates depends largely on the departure of the moveout from hyperbolic and its sensitivity to the estimated parameters. The size of the nonhyperbolic moveout in TI media is dependent primarily on the anisotropy parameter η. An “effective” version of this parameter provides a useful measure of the nonhyperbolic moveout even in v(z) isotropic media. Moreover, effective η, [Formula: see text], is used to show that the nonhyperbolic moveout associated with typical TI media (e.g., shales, with η ≃ 0.1) is larger than that associated with typical v(z) isotropic media. The departure of the moveout from hyperbolic is increased when typical anisotropy is combined with vertical heterogeneity. Larger offset‐to‐depth ratios (X/D) provide more nonhyperbolic information and, therefore, increased stability and resolution in the inversion for [Formula: see text]. The X/D values (e.g., X/D > 1.5) needed for obtaining stability and resolution are within conventional acquisition limits, especially for shallow targets. Although estimation of η using nonhyperbolic moveouts is not as stable as using the dip‐moveout method of Alkhalifah and Tsvankin, particularly in the absence of large offsets, it does offer some flexibility. It can be applied in the absence of dipping reflectors and also may be used to estimate lateral η variations. Application of the nonhyperbolic inversion to data from offshore Africa demonstrates its usefulness, especially in estimating lateral and vertical variations in η.


Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. S29-S35 ◽  
Author(s):  
Tariq Alkhalifah

Using a newly developed nonhyperbolic offset-mid-point traveltime equation for prestack Kirchhoff time migration, instead of the conventional double-square-root (DSR) equation, results in overall better images from anisotropic data. Specifically, prestack Kirchhoff time migration for transversely isotropic media with a vertical symmetry axis (VTI media) is implemented using an analytical offset-midpoint traveltime equation that represents the equivalent of Cheop's pyramid for VTI media. It includes higher-order terms necessary to better handle anisotropy as well as vertical inhomogeneity. Application of this enhanced Kirchhoff time-migration method to the anisotropic Marmousi data set demonstrates the effectiveness of the approach. Further application of the method to field data from Trinidad results in sharper reflectivity images of the subsurface, with the faults better focused and positioned than with images obtained using isotropic methods. The superiority of the anisotropic time migration is evident in the flatness of the image gathers.


Geophysics ◽  
2008 ◽  
Vol 73 (4) ◽  
pp. D53-D62 ◽  
Author(s):  
Huub Douma ◽  
Mirko van der Baan

The [Formula: see text] domain is the natural domain for anisotropy parameter estimation in horizontally layered media. The need to transform the data to the [Formula: see text] domain or to pick traveltimes in the [Formula: see text] domain is, however, a practical disadvantage. To overcome this, we combine [Formula: see text]-derived traveltimes and offsets in horizontally layered transversely isotropic media with a vertical symmetry axis (VTI) with a rational interpolation procedure applied in the [Formula: see text] domain. This combination results in an accurate and efficient [Formula: see text]-based semblance analysis for anisotropy parameter estimation from the moveout of qP-waves in horizontally layered VTI media. The semblance analysis is applied to the moveout to search directly for the interval values of the relevant parameters. To achieve this, the method is applied in a layer-stripping fashion. We demonstrate the method using synthetic data examples and show that it is robust in the presence of random noise and moderate statics.


Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1654-1664 ◽  
Author(s):  
N. C. Banik

An interesting physical meaning is presented for the anisotropy parameter δ, previously introduced by Thomsen to describe weak anisotropy in transversely isotropic media. Roughly, δ is the difference between the P-wave and SV-wave anisotropies of the medium. The observed systematic depth errors in the North Sea are reexamined in view of the new interpretation of the moveout velocity through δ. The changes in δ at an interface adequately describe the effects of transverse isotropy on the P-wave reflection amplitude, The reflection coefficient expression is linearized in terms of changes in elastic parameters. The linearized expression clearly shows that it is the variation of δ at the interface that gives the anisotropic effects at small incidence angles. Thus, δ effectively describes both the moveout velocity and the reflection amplitude variation, two very important pieces of information in reflection seismic prospecting, in the presence of transverse isotropy.


Geophysics ◽  
1996 ◽  
Vol 61 (3) ◽  
pp. 835-845 ◽  
Author(s):  
John Anderson ◽  
Tariq Alkhalifah ◽  
Ilya Tsvankin

The main advantage of Fowler’s dip‐moveout (DMO) method is the ability to perform velocity analysis along with the DMO removal. This feature of Fowler DMO becomes even more attractive in anisotropic media, where imaging methods are hampered by the difficulty in reconstructing the velocity field from surface data. We have devised a Fowler‐type DMO algorithm for transversely isotropic media using the analytic expression for normal‐moveout velocity. The parameter‐estimation procedure is based on the results of Alkhalifah and Tsvankin showing that in transversely isotropic media with a vertical axis of symmetry (VTI) the P‐wave normal‐moveout (NMO) velocity as a function of ray parameter can be described fully by just two coefficients: the zero‐dip NMO velocity [Formula: see text] and the anisotropic parameter η (η reduces to the difference between Thomsen parameters ε and δ in the limit of weak anisotropy). In this extension of Fowler DMO, resampling in the frequency‐wavenumber domain makes it possible to obtain the values of [Formula: see text] and η by inspecting zero‐offset (stacked) panels for different pairs of the two parameters. Since most of the computing time is spent on generating constant‐velocity stacks, the added computational effort caused by the presence of anisotropy is relatively minor. Synthetic and field‐data examples demonstrate that the isotropic Fowler DMO technique fails to generate an accurate zero‐offset section and to obtain the zero‐dip NMO velocity for nonelliptical VTI models. In contrast, this anisotropic algorithm allows one to find the values of the parameters [Formula: see text] and η (sufficient to perform time migration as well) and to correct for the influence of transverse isotropy in the DMO processing. When combined with poststack F-K Stolt migration, this method represents a complete inversion‐processing sequence capable of recovering the effective parameters of transversely isotropic media and producing migrated images for the best‐fit homogeneous anisotropic model.


2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. C143-C157 ◽  
Author(s):  
Song Jin ◽  
Alexey Stovas

Seismic wave reflection and transmission (R/T) responses characterize the subsurface local property, and the widely spread anisotropy has considerable influences even at small incident angles. We have considered layered transversely isotropic media with horizontal symmetry axes (HTI), and the symmetry axes were not restricted to be aligned. With the assumption of weak contrast across the interface, linear approximations for R/T coefficients normalized by vertical energy flux are derived based on a simple layered HTI model. We also obtain the approximation with the isotropic background medium under an additional weak anisotropy assumption. Numerical tests illustrate the good accuracy of the approximations compared with the exact results.


Sign in / Sign up

Export Citation Format

Share Document