Ground‐roll suppression from deep crustal seismic reflection data using a wavelet‐based approach: A case study from western Canada

Geophysics ◽  
2004 ◽  
Vol 69 (4) ◽  
pp. 877-884 ◽  
Author(s):  
J. Kim Welford ◽  
Rongfeng Zhang

Seismic reflection data sets recorded on land are often contaminated by coherent ground‐roll noise generated by the propagation of dispersive waves along the free surface. For crustal‐scale investigations, this ground‐roll contamination can be particularly harmful as the higher amplitude, low‐frequency noise overwhelms low‐frequency signals coming from deep reflectors. Consequently, conventional ground‐roll suppression techniques which rely on frequency separation of ground roll from signal become ineffective for crustal studies. This paper presents the successful use of a new 2D wavelet method based on frame theory (physical wavelet frame denoising) in removing ground roll from a deep 3D reflection data set intended for the study of upper crustal Precambrian mafic sills in southwestern Alberta, Canada.

Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1395-1407 ◽  
Author(s):  
Frank Büker ◽  
Alan G. Green ◽  
Heinrich Horstmeyer

Shallow seismic reflection data were recorded along two long (>1.6 km) intersecting profiles in the glaciated Suhre Valley of northern Switzerland. Appropriate choice of source and receiver parameters resulted in a high‐fold (36–48) data set with common midpoints every 1.25 m. As for many shallow seismic reflection data sets, upper portions of the shot gathers were contaminated with high‐amplitude, source‐generated noise (e.g., direct, refracted, guided, surface, and airwaves). Spectral balancing was effective in significantly increasing the strength of the reflected signals relative to the source‐generated noise, and application of carefully selected top mutes ensured guided phases were not misprocessed and misinterpreted as reflections. Resultant processed sections were characterized by distributions of distinct seismic reflection patterns or facies that were bounded by quasi‐continuous reflection zones. The uppermost reflection zone at 20 to 50 ms (∼15 to ∼40 m depth) originated from a boundary between glaciolacustrine clays/silts and underlying glacial sands/gravels (till) deposits. Of particular importance was the discovery that the deepest part of the valley floor appeared on the seismic section at traveltimes >180 ms (∼200 m), approximately twice as deep as expected. Constrained by information from boreholes adjacent to the profiles, the various seismic units were interpreted in terms of unconsolidated glacial, glaciofluvial, and glaciolacustrine sediments deposited during two principal phases of glaciation (Riss at >100 000 and Würm at ∼18 000 years before present).


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. A25-A29
Author(s):  
Lele Zhang

Migration of seismic reflection data leads to artifacts due to the presence of internal multiple reflections. Recent developments have shown that these artifacts can be avoided using Marchenko redatuming or Marchenko multiple elimination. These are powerful concepts, but their implementation comes at a considerable computational cost. We have derived a scheme to image the subsurface of the medium with significantly reduced computational cost and artifacts. This scheme is based on the projected Marchenko equations. The measured reflection response is required as input, and a data set with primary reflections and nonphysical primary reflections is created. Original and retrieved data sets are migrated, and the migration images are multiplied with each other, after which the square root is taken to give the artifact-reduced image. We showed the underlying theory and introduced the effectiveness of this scheme with a 2D numerical example.


2018 ◽  
Vol 123 (12) ◽  
pp. 10,810-10,830
Author(s):  
Michael Dentith ◽  
Huaiyu Yuan ◽  
Ruth Elaine Murdie ◽  
Perla Pina-Varas ◽  
Simon P. Johnson ◽  
...  

Geophysics ◽  
1989 ◽  
Vol 54 (1) ◽  
pp. 122-126 ◽  
Author(s):  
R. J. J. Hardy ◽  
M. R. Warner ◽  
R. W. Hobbs

The many techniques that have been developed to remove multiple reflections from seismic data all leave remnant energy which can cause ambiguity in interpretation. The removal methods are mostly based on periodicity (e.g., Sinton et al., 1978) or the moveout difference between primary and multiple events (e.g., Schneider et al., 1965). They work on synthetic and selected field data sets but are rather unsatisfactory when applied to high‐amplitude, long‐period multiples in marine seismic reflection data acquired in moderately deep (700 m to 3 km) water. Differential moveout is often better than periodicity at discriminating between types of events because, while a multiple series may look periodic to the eye, it is only exactly so on zero‐offset reflections from horizontal layers. The technique of seismic event labeling described below works by returning offset information from CDP gathers to a stacked section by color coding, thereby discriminating between seismic reflection events by differential normal moveout. Events appear as a superposition of colors; the direction of color fringes indicates whether an event has been overcorrected or undercorrected for its hyperbolic normal moveout.


Geophysics ◽  
2007 ◽  
Vol 72 (6) ◽  
pp. B149-B160 ◽  
Author(s):  
Cedric Schmelzbach ◽  
Heinrich Horstmeyer ◽  
Christopher Juhlin

A limited 3D seismic-reflection data set was used to map fracture zones in crystalline rock for a nuclear waste disposal site study. Seismic-reflection data simultaneously recorded along two roughly perpendicular profiles (1850 and [Formula: see text] long) and with a [Formula: see text] receiver array centered at the intersection of the lines sampled a [Formula: see text] area in three dimensions. High levels of source-generated noise required a processing sequence involving surface-consistent deconvolution, which effectively increased the strength of reflected signals, and a linear [Formula: see text] filtering scheme to suppress any remaining direct [Formula: see text]-wave energy. A flexible-binning scheme significantly balanced and increased the CMP fold, but the offset and azimuth distributions remain irregular; a wide azimuth range and offsets [Formula: see text] are concentrated in the center of the survey area although long offsets [Formula: see text] are only found at the edges of the site. Three-dimensional dip moveout and 3D poststack migration were necessary to image events with conflicting dips up to about 40°. Despite the irregular acquisition geometry and the high level of source-generated noise, we obtained images rich in structural detail. Seven continuous to semicontinuous reflection events were traced through the final data volume to a maximum depth of around [Formula: see text]. Previous 2D seismic-reflection studies and borehole data indicate that fracture zones are the most likely cause of the reflections.


Geophysics ◽  
2001 ◽  
Vol 66 (6) ◽  
pp. 1761-1773 ◽  
Author(s):  
Roman Spitzer ◽  
Alan G. Green ◽  
Frank O. Nitsche

By appropriately decimating a comprehensive shallow 3‐D seismic reflection data set recorded across unconsolidated sediments in northern Switzerland, we have investigated the potential and limitations of four different source‐receiver acquisition patterns. For the original survey, more than 12 000 shots and 18 000 receivers deployed on a [Formula: see text] grid resulted in common midpoint (CMP) data with an average fold of ∼40 across a [Formula: see text] area. A principal goal of our investigation was to determine an acquisition strategy capable of producing reliable subsurface images in a more efficient and cost‐effective manner. Field efforts for the four tested acquisition strategies were approximately 50%, 50%, 25%, and 20% of the original effort. All four data subsets were subjected to a common processing sequence. Static corrections, top‐mute functions, and stacking velocities were estimated individually for each subset. Because shallow reflections were difficult to discern on shot and CMP gathers generated with the lowest density acquisition pattern (20% field effort) such that dependable top‐mute functions could not be estimated, data resulting from this acquisition pattern were not processed to completion. Of the three fully processed data subsets, two (50% field effort and 25% field effort) yielded 3‐D migrated images comparable to that derived from the entire data set, whereas the third (50% field effort) resulted in good‐quality images only in the shallow subsurface because of a lack of far‐offset data. On the basis of these results, we concluded that all geological objectives associated with our particular study site, which included mapping complex lithological units and their intervening shallow dipping boundaries, would have been achieved by conducting a 3‐D seismic reflection survey that was 75% less expensive than the original one.


2019 ◽  
Author(s):  
Maurizio Ercoli ◽  
Emanuele Forte ◽  
Massimiliano Porreca ◽  
Ramon Carbonell ◽  
Cristina Pauselli ◽  
...  

Abstract. In seismotectonic studies, seismic reflection data are a powerful tool to unravel the complex deep architecture of active faults. Such tectonic structures are usually mapped at surface through traditional geological surveying whilst seismic reflection data may help to trace their continuation from the near-surface down to hypocentral depth. In this study, we propose the application of the seismic attributes technique, commonly used in seismic reflection exploration by oil industry, to seismotectonic research for the first time. The study area is a geologically complex region of Central Italy, recently struck by a long-lasting seismic sequence including a Mw 6.5 main-shock. A seismic reflection data-set consisting of three vintage seismic profiles, currently the only available across the epicentral zone, constitutes a singular opportunity to attempt a seismic attribute analysis. This analysis resulted in peculiar seismic signatures which generally correlate with the exposed surface geologic features, and also confirming the presence of other debated structures. These results are critical, because provide information also on the relatively deep structural setting, mapping a prominent, high amplitude regional reflector that marks the top basement, interpreted as important rheological boundary. Complex patterns of high-angle discontinuities crossing the reflectors have been also identified. These dipping fabrics are interpreted as the expression of fault zones, belonging to the active normal fault systems responsible for the seismicity of the region. This work demonstrates that seismic attribute analysis, even if used on low-quality vintage 2D data, may contribute to improve the subsurface geological interpretation of areas characterized by high seismic potential.


2021 ◽  
pp. 2250-2261
Author(s):  
Ahmed Muslim Khawaja ◽  
Jassim Muhammad Thabit

     This research is an attempt to solve the ambiguity associated with the stratigraphic setting of the main reservoir (late Cretaceous) of Mishrif Formation in Dujaila oil field. This was achieved by studying a 3D seismic reflection post-stack data for an area of ​​602.62 Km2 in Maysan Governorate, southeast of Iraq. Seismic analysis of the true amplitude reflections, time maps, and 3D depositional models showed a sufficient seismic evidence that the Mishrif Formation produces oil from a stratigraphic trap of isolated reef carbonate buildups that were grown on the shelf edge of the carbonate platform, located in the area around the productive well Dujaila-1. The low-frequency attribute illustrated that it is restricted in the area around the productive well Dujaila-1, which confirmed the existence of reef porous carbonate buildups and hydrocarbon accumulation in this region. The pay zone of the reef mound trap extends for about 7 km from the well Dujaila-1 toward the southwest side and 4 km toward the well Dujaila-2, without reaching it, which is explaining why it was dry. Therefore, this area to the south of the productive well Dujaila-1 represents a good area for low-risk drilling. Consequently, the hydrocarbon system observed in the Dujaila oil field provides a new opportunity to explore and produce oil in Mishrif Formation in other areas on the flank of the productive structures and in flat areas situated on the belt of the carbonate platform edge.


Sign in / Sign up

Export Citation Format

Share Document