An analytical solution to separate P‐waves and S‐waves in the VSP wavefield

1994 ◽  
Author(s):  
Hiroshi Amano
Keyword(s):  
P Waves ◽  
Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 955-967 ◽  
Author(s):  
Hiroshi Amano

An analytical solution to separate P‐waves and S‐waves in vertical seismic profile (VSP) wavefields is derived using combinations of certain terms of the formal solution for forward VSP modeling. Some practical applications of this method to synthetic seismograms and field data are investigated and evaluated. Little wave distortion is recognized, and the weak wavefield masked by dominant wavetrains can be extracted with this method. The decomposed wavefield is expressed in the frequency‐depth (f-z) domain as a linear combination of up to the third‐order differential of traces, which is approximated by trace differences in the practical separation process. In general, five traces with single‐component data are required in this process, but the same process is implemented with only three traces in the acoustic case. Two‐trace extrapolation is applied to each edge of the data gather to enhance the accuracy of trace difference. Since the formulas are developed in the f-z domain, the influence of anelasticity can be taken into account, and the calculation is carried out fast enough with the benefit of the fast Fourier transform (FFT).


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D283-D291 ◽  
Author(s):  
Peng Liu ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
...  

We have developed a new 3D acoustic logging tool (3DAC). To examine the azimuthal resolution of 3DAC, we have evaluated a 3D finite-difference time-domain model to simulate a case in which the borehole penetrated a rock formation boundary when the tool worked at the azimuthal-transmitting-azimuthal-receiving mode. The results indicated that there were two types of P-waves with different slowness in waveforms: the P-wave of the harder rock (P1) and the P-wave of the softer rock (P2). The P1-wave can be observed in each azimuthal receiver, but the P2-wave appears only in the azimuthal receivers toward the softer rock. When these two types of rock are both fast formations, two types of S-waves also exist, and they have better azimuthal sensitivity compared with P-waves. The S-wave of the harder rock (S1) appears only in receivers toward the harder rock, and the S-wave of the softer rock (S2) appears only in receivers toward the softer rock. A model was simulated in which the boundary between shale and sand penetrated the borehole but not the borehole axis. The P-wave of shale and the S-wave of sand are azimuthally sensitive to the azimuth angle variation of two formations. In addition, waveforms obtained from 3DAC working at the monopole-transmitting-azimuthal-receiving mode indicate that the corresponding P-waves and S-waves are azimuthally sensitive, too. Finally, we have developed a field example of 3DAC to support our simulation results: The azimuthal variation of the P-wave slowness was observed and can thus be used to reflect the azimuthal heterogeneity of formations.


2019 ◽  
Vol 17 (2) ◽  
pp. 300-312 ◽  
Author(s):  
Xu Liu ◽  
Stewart Greenhalgh ◽  
Bing Zhou ◽  
Huijian Li

Abstract We derive explicit expressions for the dissipation factors of inhomogeneous P and SV-waves in isotropic viscoelastic media. The Q−1 values are given as concise and simple functions of material parameters and the wave inhomogeneity parameter using two different definitions. Unlike homogenous waves, inhomogeneous waves may have significant differences in the values of dissipation factors because of different definitions. For example, under one of the three dissipation factor definitions that Q−1 is equal to the time-averaged dissipated-energy density divided by twice the time-averaged strain-energy density, it is found and proved that the dissipation factor of SV-waves is totally independent of the inhomogeneity parameter. For materials in which P-waves are normally more dissipative than S-waves (e.g. a porous reservoir), the dissipation factors of P-waves tend to decrease with increasing degree of inhomogeneity. Based on Buchan's classic real value energy balance equation, a parallel investigation is conducted for each step similar to that based on the Carcione equations, including derivation of explicit formulas (with inhomogeneity angle representing the degree of inhomogeneity of a plane wave), and dissipation curves calculations. We also obtain an inhomogeneity independent formula of $Q_{\, SV}^{ - 1}$, and exactly the same phase velocity and attenuation dispersion results for the example material.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. T221-T231 ◽  
Author(s):  
Christine E. Krohn ◽  
Thomas J. Murray

The top 6 m of the near surface has a surprisingly large effect on the behavior of P- and S-waves. For unconsolidated sediments, the P-wave velocity gradient and attenuation can be quite large. Computer modeling should include these properties to accurately reproduce seismic effects of the near surface. We have used reverse VSP data and computer simulations to demonstrate the following effects for upgoing P-waves. Near the surface, we have observed a large time delay, indicating low velocity ([Formula: see text]), and considerable pulse broadening, indicating high attenuation ([Formula: see text]). Consequently, shallowly buried geophones have greater high-frequency bandwidth compared with surface geophones. In addition, there is a large velocity gradient in the shallow near surface (factor of 10 in 5 m), resulting in the rotation of P-waves to the vertical with progressively smaller amplitudes recorded on horizontal phones. Finally, we have found little indication of a reflection or ghost from the surface, although downgoing reflections have been observed from interfaces within the near surface. In comparison, the following have been observed for upgoing S-waves: There is a small increase in the time delay or pulse broadening near the surface, indicating a smaller velocity gradient and less change in attenuation. In addition, the surface reflection coefficient is nearly one with a prominent surface ghost.


2017 ◽  
Vol 57 (2) ◽  
pp. 738
Author(s):  
Alexey Goncharov ◽  
Michal Malinowski ◽  
Dejan Sekulic ◽  
Ashby Cooper ◽  
Peter Chia ◽  
...  

A fleet of new Australian ocean bottom seismographs (OBSs) have broadband frequency range, and similar instruments are available at only five or six institutions globally. These OBSs are multi-purpose devices able to record passive-source seismic data (earthquakes, ambient noise) as well as active-source (airgun generated) data and, at the same time, to monitor seismic survey noise and whale calls for environmentally responsible exploration. OBS data collected during commercial seismic surveys in Australian waters prove that it is possible to image the velocity distribution of the whole crust and upper mantle from analysis of both reflected and refracted phases generated by an industry-standard broadband airgun array. This means that valuable information on a regional scale can be obtained as a by-product of commercial seismic surveys. Three-component recording capability of OBSs allows analysis of S-waves in addition to the P-waves that are conventionally used in marine reflection surveys.


2020 ◽  
Vol 221 (2) ◽  
pp. 1029-1042 ◽  
Author(s):  
Hiroo Kanamori ◽  
Zachary E Ross ◽  
Luis Rivera

SUMMARY We use KiK-net (NIED) downhole records to estimate the radiated energy, ER, of 29 Japanese inland earthquakes with a magnitude range from Mw = 5.6 to 7.0. The method is based on the work of Gutenberg and Richter in which the time integral of S-wave ground-motion velocity-squared is measured as a basic metric of the radiated energy. Only stations within a distance of 100 km are used to minimize complex path and attenuation effects. Unlike the teleseismic method that uses mainly P waves, the use of S waves which carry more than 95 per cent of the radiated energy allows us to obtain robust results. We calibrate the method using synthetic seismograms to modernize and improve the Gutenberg–Richter method. We compute synthetic seismograms for a source model of each event with a given source function (i.e. known ER), the actual mechanism and the source-station geometry. Then, we compare the given ER with the computed energy metric to correct for the unknown effect of wave propagation and the mechanism. The use of downhole records minimizes the uncertainty resulting from the site response. Our results suggest that the currently available estimates of ER from teleseismic data are probably within a factor of 3, on average, of the absolute value. The scaled energy eR ( = ER/M0) is nearly constant at about 3 × 10−5 over a magnitude range from Mw = 5.6 to 7.0 with a slight increasing trend with Mw. We found no significant difference in eR between dip-slip and strike-slip events.


Geophysics ◽  
1992 ◽  
Vol 57 (3) ◽  
pp. 474-477 ◽  
Author(s):  
Mohammed Alfaraj ◽  
Ken Larner

The transformation to zero offset (TZO) of prestack seismic data for a constant‐velocity medium is well understood and is readily implemented when dealing with either P‐waves or S‐waves. TZO is achieved by inserting a dip moveout (DMO) process to correct data for the influence of dip, either before or after normal moveout (NMO) correction (Hale, 1984; Forel and Gardner, 1988). The TZO process transforms prestack seismic data in such a way that common‐midpoint (CMP) gathers are closer to being common reflection point gathers after the transformation.


Geophysics ◽  
1993 ◽  
Vol 58 (7) ◽  
pp. 997-1001 ◽  
Author(s):  
B. L. N. Kennett

For marine seismic sources quite efficient conversion of P‐waves to S‐waves can occur at hard seafloors, e.g., carbonate horizons in tropical waters. The S‐waves are reflected back from structures at depth and are reconverted to P‐waves in the water before detection by the receiver array. Such PSSP reflections can carry useful information on the structure beneath the sea bed but are most significant at large offsets and so are not easily stacked with a conventional normal moveout (NMO) procedure based on a hyperbolic time trajectory. A two‐layer stacking procedure that separates the water layer from the region below the seafloor provides a very effective means of extracting the PSSP arrivals, but also works well for P‐waves. There is no direct analytic form for the stacking trajectories but they can be calculated quite efficiently numerically. A further advantage is that the stacking velocity for S‐waves in the lower layer can be interpreted directly in terms of S‐wave propagation, so that S‐wave interval velocities can be found. Stacking procedures based on such simple physical models are likely to be useful in other cases where attention needs to be focused on a particular aspect of the wavefield.


Sign in / Sign up

Export Citation Format

Share Document