Wave propagation in heterogeneous media: Effects of fine-scale heterogeneity

Geophysics ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. T37-T49 ◽  
Author(s):  
Florence Delprat-Jannaud ◽  
Patrick Lailly

We study the multiple scattering effects caused by fine-scale heterogeneity. For this purpose, it is unreasonable to rely on a linearization of the dependency of the wavefield in the parameters that describe the medium. Therefore, the only tools that correctly model wave propagation are based on the numerical solution of the (two-way) wave equation by finite differences or finite elements. A fine grid provides a straightforward approach to account for fine-scale heterogeneity. In this situation, there is no need for high-order schemes. Variational methods allow us to exhibit a numerical scheme that accounts for heterogeneity and that is, by construction, stable, provided a stability condition is fulfilled. This condition is a sufficient-stability condition contrary to the classical necessary-stability conditions. In addition, general mathematical results prove the finite-difference solution is close to the solution of the wave equation when the grid is fine enough. The multiple scattering effects caused by fine-scale heterogeneity are very important. In particular, we observe that imaging the so-computed synthetic data by standard migration techniques (that assume a linearization of the above-mentioned dependency) shows a strongly noise-corrupted image. This illustrates the importance of preprocessing data to remove the effect of multiple scattering. We try to improve the signal-to-noise ratio by removing multiples related to the free surface. Although significant noise reduction is achieved, even more sophisticated preprocessing is required to obtain a clear image of the subsurface.

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. T61-T75 ◽  
Author(s):  
Richard L. Gibson ◽  
Kai Gao ◽  
Eric Chung ◽  
Yalchin Efendiev

Conventional finite-difference methods produce accurate solutions to the acoustic and elastic wave equation for many applications, but they face significant challenges when material properties vary significantly over distances less than the grid size. This challenge is likely to occur in reservoir characterization studies, because important reservoir heterogeneity can be present on scales of several meters to ten meters. Here, we describe a new multiscale finite-element method for simulating acoustic wave propagation in heterogeneous media that addresses this problem by coupling fine- and coarse-scale grids. The wave equation is solved on a coarse grid, but it uses basis functions that are generated from the fine grid and allow the representation of the fine-scale variation of the wavefield on the coarser grid. Time stepping also takes place on the coarse grid, providing further speed gains. Another important property of the method is that the basis functions are only computed once, and time savings are even greater when simulations are repeated for many source locations. We first present validation results for simple test models to demonstrate and quantify potential sources of error. These tests show that the fine-scale solution can be accurately approximated when the coarse grid applies a discretization up to four times larger than the original fine model. We then apply the multiscale algorithm to simulate a complete 2D seismic survey for a model with strong, fine-scale scatterers and apply standard migration algorithms to the resulting synthetic seismograms. The results again show small errors. Comparisons to a model that is upscaled by averaging densities on the fine grid show that the multiscale results are more accurate.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-589-C8-592
Author(s):  
N. BINSTED ◽  
S. L. COOK ◽  
J. EVANS ◽  
R. J. PRICE ◽  
G. N. GREAVES

Sign in / Sign up

Export Citation Format

Share Document