Automating the acquisition of 3D near‐surface seismic reflection data

2009 ◽  
Author(s):  
Steven D. Sloan ◽  
Don W. Steeples ◽  
Georgios P. Tsoflias ◽  
Mihan H. McKenna
Geophysics ◽  
1985 ◽  
Vol 50 (6) ◽  
pp. 903-923 ◽  
Author(s):  
T. N. Bishop ◽  
K. P. Bube ◽  
R. T. Cutler ◽  
R. T. Langan ◽  
P. L. Love ◽  
...  

Estimation of reflector depth and seismic velocity from seismic reflection data can be formulated as a general inverse problem. The method used to solve this problem is similar to tomographic techniques in medical diagnosis and we refer to it as seismic reflection tomography. Seismic tomography is formulated as an iterative Gauss‐Newton algorithm that produces a velocity‐depth model which minimizes the difference between traveltimes generated by tracing rays through the model and traveltimes measured from the data. The input to the process consists of traveltimes measured from selected events on unstacked seismic data and a first‐guess velocity‐depth model. Usually this first‐guess model has velocities which are laterally constant and is usually based on nearby well information and/or an analysis of the stacked section. The final model generated by the tomographic method yields traveltimes from ray tracing which differ from the measured values in recorded data by approximately 5 ms root‐mean‐square. The indeterminancy of the inversion and the associated nonuniqueness of the output model are both analyzed theoretically and tested numerically. It is found that certain aspects of the velocity field are poorly determined or undetermined. This technique is applied to an example using real data where the presence of permafrost causes a near‐surface lateral change in velocity. The permafrost is successfully imaged in the model output from tomography. In addition, depth estimates at the intersection of two lines differ by a significantly smaller amount than the corresponding estimates derived from conventional processing.


2016 ◽  
Vol 4 (3) ◽  
pp. SH1-SH9
Author(s):  
Steven D. Sloan ◽  
J. Tyler Schwenk ◽  
Robert H. Stevens

Variability of material properties in the shallow subsurface presents challenges for near-surface geophysical methods and exploration-scale applications. As the depth of investigation decreases, denser sampling is required, especially of the near offsets, to accurately characterize the shallow subsurface. We have developed a field data example using high-resolution shallow seismic reflection data to demonstrate how quickly near-surface properties can change over short distances and the effects on field data and processed sections. The addition of a relatively thin, 20 cm thick, low-velocity layer can lead to masked reflections and an inability to map shallow reflectors. Short receiver intervals, on the order of 10 cm, were necessary to identify the cause of the diminished data quality and would have gone unknown using larger, more conventional station spacing. Combined analysis of first arrivals, surface waves, and reflections aided in determining the effects and extent of a low-velocity layer that inhibited the identification and constructive stacking of the reflection from a shallow water table using normal-moveout-based processing methods. Our results also highlight the benefits of using unprocessed gathers to pragmatically guide processing and interpretation of seismic data.


2019 ◽  
Author(s):  
Maurizio Ercoli ◽  
Emanuele Forte ◽  
Massimiliano Porreca ◽  
Ramon Carbonell ◽  
Cristina Pauselli ◽  
...  

Abstract. In seismotectonic studies, seismic reflection data are a powerful tool to unravel the complex deep architecture of active faults. Such tectonic structures are usually mapped at surface through traditional geological surveying whilst seismic reflection data may help to trace their continuation from the near-surface down to hypocentral depth. In this study, we propose the application of the seismic attributes technique, commonly used in seismic reflection exploration by oil industry, to seismotectonic research for the first time. The study area is a geologically complex region of Central Italy, recently struck by a long-lasting seismic sequence including a Mw 6.5 main-shock. A seismic reflection data-set consisting of three vintage seismic profiles, currently the only available across the epicentral zone, constitutes a singular opportunity to attempt a seismic attribute analysis. This analysis resulted in peculiar seismic signatures which generally correlate with the exposed surface geologic features, and also confirming the presence of other debated structures. These results are critical, because provide information also on the relatively deep structural setting, mapping a prominent, high amplitude regional reflector that marks the top basement, interpreted as important rheological boundary. Complex patterns of high-angle discontinuities crossing the reflectors have been also identified. These dipping fabrics are interpreted as the expression of fault zones, belonging to the active normal fault systems responsible for the seismicity of the region. This work demonstrates that seismic attribute analysis, even if used on low-quality vintage 2D data, may contribute to improve the subsurface geological interpretation of areas characterized by high seismic potential.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. P13-P25
Author(s):  
Michael J. Faggetter ◽  
Mark E. Vardy ◽  
Justin K. Dix ◽  
Jonathan M. Bull ◽  
Timothy J. Henstock

Time-lapse (4D) seismic imaging is now widely used as a tool to map and interpret changes in deep reservoirs as well as investigate dynamic, shallow hydrological processes in the near surface. However, there are very few examples of time-lapse analysis using ultra-high-frequency (UHF; kHz range) marine seismic reflection data. Exacting requirements for navigation can be prohibitive for acquiring coherent, true-3D volumes. Variable environmental noise can also lead to poor amplitude repeatability and make it difficult to identify differences that are related to real physical changes. Overcoming these challenges opens up a range of potential applications for monitoring the subsurface at decimetric resolution, including geohazards, geologic structures, as well as the bed-level and subsurface response to anthropogenic activities. Navigation postprocessing was incorporated to improve the acquisition and processing workflow for the 3D Chirp subbottom profiler and provide stable, centimeter-level absolute positioning, resulting in well-matched 3D data and mitigating 4D noise for data stacked into [Formula: see text] common-midpoint bins. Within an example 4D data set acquired on the south coast of the UK, interpretable differences are recorded within a shallow gas blanket. Reflections from the top and bottom of a gas pocket are imaged at low tide, whereas at high tide only the upper reflection is imaged. This case study demonstrates the viability of time-lapse UHF 3D seismic reflection for quantitative mapping of decimeter-scale changes within the shallow marine subsurface.


2016 ◽  
Vol 15 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Brian E. Miller ◽  
Steven D. Sloan ◽  
Georgios P. Tsoflias ◽  
Don W. Steeples

Sign in / Sign up

Export Citation Format

Share Document