Acquisition footprints and seafloor coupling in multicomponent OBC seismic data

Geophysics ◽  
2010 ◽  
Vol 75 (1) ◽  
pp. Q11-Q20 ◽  
Author(s):  
R. James Brown

In four-component (4-C) towed ocean-bottom-cable (OBC) data sets, acquisition footprints are often observed. Sometimes these exhibit a spatial period equal to the length of the receiver cable. I have analyzed a 2D 4-C OBC data set, looking at common-offset gathers (COG), spectral analyses, and hodogram analyses of the direct P-wave first breaks. The acquisition footprint is seen to be directly related to the following effects observed on a few of the multicomponent receivers, namely, those nearest to the towing vessel: significant delays on the inline component though not on the downgoing direct-P first breaks; depletion of higher frequencies (narrower bandwidth) on the inline component; and oscillatory motion closer to the vertical on the direct-P first breaks equivalent to decreased amplitude on the in-line component. This is interpreted to be a result of the towing procedure wherein the leading end of the cable, with the first few receiver modules, is raised from the seafloor and laid down again, relatively lightly, on top of seafloor material that might be poorly consolidated, while the trailing receivers are pulled through and down into this material. For these leading receiver modules, this results in poor inline horizontal coupling (i.e., slipping) and delayed P-S onsets due to their vertically higher positions (relative to the trailing receivers) and quite high near-seafloor [Formula: see text] ratios. To rectify this problem in future acquisition, a longer lead-in cable should prevent lifting of the leading receivers and allow all of them to couple with the seafloor in the same way. For data already acquired with an acquisition footprint on the inline component, a two-step process involving surface-consistent deconvolution or trace equalization and static correction is proposed.

Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. B243-B252 ◽  
Author(s):  
Peter Bergmann ◽  
Artem Kashubin ◽  
Monika Ivandic ◽  
Stefan Lüth ◽  
Christopher Juhlin

A method for static correction of time-lapse differences in reflection arrival times of time-lapse prestack seismic data is presented. These arrival-time differences are typically caused by changes in the near-surface velocities between the acquisitions and had a detrimental impact on time-lapse seismic imaging. Trace-to-trace time shifts of the data sets from different vintages are determined by crosscorrelations. The time shifts are decomposed in a surface-consistent manner, which yields static corrections that tie the repeat data to the baseline data. Hence, this approach implies that new refraction static corrections for the repeat data sets are unnecessary. The approach is demonstrated on a 4D seismic data set from the Ketzin [Formula: see text] pilot storage site, Germany, and is compared with the result of an initial processing that was based on separate refraction static corrections. It is shown that the time-lapse difference static correction approach reduces 4D noise more effectively than separate refraction static corrections and is significantly less labor intensive.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. B69-B80 ◽  
Author(s):  
Jonathan Stewart ◽  
Andrew Shatilo ◽  
Charlie Jing ◽  
Tommie Rape ◽  
Richard Duren ◽  
...  

Compressional P-wave ocean-bottom-cable (OBC) seismic data from the Beryl Alpha field in the U. K. North Sea provide a superior image of the subsurface compared to heritage streamer seismic data. To determine the reason for the superiority of OBC data, the results of a detailed comparison of these OBC and streamer data sets are compared. The streamer and OBC data sets are reprocessed using a strategy that attempts to isolate the roles of processing, fold, azimuth, PZ combination, and hydrophone and geophone data have on the improved OBC image. The vertical component of the geophone (OBC Z) provides the major contribution to the improved OBC image. The imaged OBC Z datacontain fewer multiples and have a higher signal-to-noise ratio than the streamer. The OBC data have a lower level of multiple contamination because of the contribution from the OBC Z component, together with an effective suppression of receiver-side water-column reverberations as a result of the combination of the OBC hydrophone and geophone traces (PZ combination). The increased fold and wider azimuths of OBC data improve the OBC image slightly. Wider azimuths improve fault imaging, especially for faults oriented obliquely to the inline and crossline directions. The particular conditions at Beryl Alpha field that make the OBC survey successful are the relatively hard water bottom and the presence of multiples that are difficult to remove from streamer data using standard demultiple techniques.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1028-1037 ◽  
Author(s):  
R. James Brown ◽  
Robert R. Stewart ◽  
Don C. Lawton

This paper proposes a multicomponent acquisition and preprocessing polarity standard that will apply generally to the three Cartesian geophone components and the hydrophone or microphone components of a 2‐D or 3‐D multicomponent survey on land, at the sea bottom, acquired as a vertical seismic profile, vertical‐cable, or marine streamer survey. We use a four‐component ocean‐bottom data set for purposes of illustration and example. A primary objective is a consistent system of polarity specifications to facilitate consistent horizon correlation among multicomponent data sets and enable determination of correct reflectivity polarity. The basis of this standard is the current SEG polarity standard, first enunciated as a field‐recording standard for vertical geophone data and hydrophone streamer data. It is founded on a right‐handed coordinate system: z positive downward; x positive in the forward line direction in a 2‐D survey, or a specified direction in a 3‐D survey, usually that of the receiver‐cable lines; and y positive in the direction 90° clockwise from x. The polarities of these axes determine the polarity of ground motion in any component direction (e.g., downward ground motion recording as positive values on the vertical‐geophone trace). According also to this SEG standard, a pressure decrease is to be recorded as positive output on the hydrophone trace. We also recommend a cyclic indexing convention, [W, X, Y, Z] or [0, 1, 2, 3], to denote hydrophone or microphone (pressure), inline (radial) geophone, crossline (transverse) geophone, and vertical geophone, respectively. We distinguish among three kinds of polarity standard: acquisition, preprocessing, and final‐display standards. The acquisition standard (summarized in the preceding paragraph) relates instrument output solely to sense of ground motion (geophones) and of pressure change (hydrophones). Polarity considerations beyond this [involving, e.g., source type, wave type (P or S), direction of arrival, anisotropy, tap‐test adjustments, etc.] fall under preprocessing polarity standards. We largely defer any consideration of a display standard.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. R199-R217 ◽  
Author(s):  
Xintao Chai ◽  
Shangxu Wang ◽  
Genyang Tang

Seismic data are nonstationary due to subsurface anelastic attenuation and dispersion effects. These effects, also referred to as the earth’s [Formula: see text]-filtering effects, can diminish seismic resolution. We previously developed a method of nonstationary sparse reflectivity inversion (NSRI) for resolution enhancement, which avoids the intrinsic instability associated with inverse [Formula: see text] filtering and generates superior [Formula: see text] compensation results. Applying NSRI to data sets that contain multiples (addressing surface-related multiples only) requires a demultiple preprocessing step because NSRI cannot distinguish primaries from multiples and will treat them as interference convolved with incorrect [Formula: see text] values. However, multiples contain information about subsurface properties. To use information carried by multiples, with the feedback model and NSRI theory, we adapt NSRI to the context of nonstationary seismic data with surface-related multiples. Consequently, not only are the benefits of NSRI (e.g., circumventing the intrinsic instability associated with inverse [Formula: see text] filtering) extended, but also multiples are considered. Our method is limited to be a 1D implementation. Theoretical and numerical analyses verify that given a wavelet, the input [Formula: see text] values primarily affect the inverted reflectivities and exert little effect on the estimated multiples; i.e., multiple estimation need not consider [Formula: see text] filtering effects explicitly. However, there are benefits for NSRI considering multiples. The periodicity and amplitude of the multiples imply the position of the reflectivities and amplitude of the wavelet. Multiples assist in overcoming scaling and shifting ambiguities of conventional problems in which multiples are not considered. Experiments using a 1D algorithm on a synthetic data set, the publicly available Pluto 1.5 data set, and a marine data set support the aforementioned findings and reveal the stability, capabilities, and limitations of the proposed method.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. M41-M48 ◽  
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali

The ideal approach for continuous reservoir monitoring allows generation of fast and accurate images to cope with the massive data sets acquired for such a task. Conventionally, rigorous depth-oriented velocity-estimation methods are performed to produce sufficiently accurate velocity models. Unlike the traditional way, the target-oriented imaging technology based on the common-focus point (CFP) theory can be an alternative for continuous reservoir monitoring. The solution is based on a robust data-driven iterative operator updating strategy without deriving a detailed velocity model. The same focusing operator is applied on successive 3D seismic data sets for the first time to generate efficient and accurate 4D target-oriented seismic stacked images from time-lapse field seismic data sets acquired in a [Formula: see text] injection project in Saudi Arabia. Using the focusing operator, target-oriented prestack angle domain common-image gathers (ADCIGs) could be derived to perform amplitude-versus-angle analysis. To preserve the amplitude information in the ADCIGs, an amplitude-balancing factor is applied by embedding a synthetic data set using the real acquisition geometry to remove the geometry imprint artifact. Applying the CFP-based target-oriented imaging to time-lapse data sets revealed changes at the reservoir level in the poststack and prestack time-lapse signals, which is consistent with the [Formula: see text] injection history and rock physics.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R271-R293 ◽  
Author(s):  
Nuno V. da Silva ◽  
Gang Yao ◽  
Michael Warner

Full-waveform inversion deals with estimating physical properties of the earth’s subsurface by matching simulated to recorded seismic data. Intrinsic attenuation in the medium leads to the dispersion of propagating waves and the absorption of energy — media with this type of rheology are not perfectly elastic. Accounting for that effect is necessary to simulate wave propagation in realistic geologic media, leading to the need to estimate intrinsic attenuation from the seismic data. That increases the complexity of the constitutive laws leading to additional issues related to the ill-posed nature of the inverse problem. In particular, the joint estimation of several physical properties increases the null space of the parameter space, leading to a larger domain of ambiguity and increasing the number of different models that can equally well explain the data. We have evaluated a method for the joint inversion of velocity and intrinsic attenuation using semiglobal inversion; this combines quantum particle-swarm optimization for the estimation of the intrinsic attenuation with nested gradient-descent iterations for the estimation of the P-wave velocity. This approach takes advantage of the fact that some physical properties, and in particular the intrinsic attenuation, can be represented using a reduced basis, substantially decreasing the dimension of the search space. We determine the feasibility of the method and its robustness to ambiguity with 2D synthetic examples. The 3D inversion of a field data set for a geologic medium with transversely isotropic anisotropy in velocity indicates the feasibility of the method for inverting large-scale real seismic data and improving the data fitting. The principal benefits of the semiglobal multiparameter inversion are the recovery of the intrinsic attenuation from the data and the recovery of the true undispersed infinite-frequency P-wave velocity, while mitigating ambiguity between the estimated parameters.


Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. U51-U65 ◽  
Author(s):  
Stig-Kyrre Foss ◽  
Bjørn Ursin ◽  
Maarten V. de Hoop

We present a method of reflection tomography for anisotropic elastic parameters from PP and PS reflection seismic data. The method is based upon the differential semblance misfit functional in scattering angle and azimuth (DSA) acting on common-image-point gathers (CIGs) to find fitting velocity models. The CIGs are amplitude corrected using a generalized Radon transform applied to the data. Depth consistency between the PP and PS images is enforced by penalizing any mis-tie between imaged key reflectors. The mis-tie is evaluated by means of map migration-demigration applied to the geometric information (times and slopes) contained in the data. In our implementation, we simplify the codepthing approach to zero-scattering-angle data only. The resulting measure is incorporated as a regularization in the DSA misfit functional. We then resort to an optimization procedure, restricting ourselves to transversely isotropic (TI) velocity models. In principle, depending on the available surface-offset range and orientation of reflectors in the subsurface, by combining the DSA with codepthing, the anisotropic parameters for TI models can be determined, provided the orientation of the symmetry axis is known. A proposed strategy is applied to an ocean-bottom-seismic field data set from the North Sea.


2020 ◽  
Vol 8 (1) ◽  
pp. T141-T149
Author(s):  
Ritesh Kumar Sharma ◽  
Satinder Chopra ◽  
Larry R. Lines

Multicomponent seismic data offer several advantages for characterizing reservoirs with the use of the vertical component (PP) and mode-converted (PS) data. Joint impedance inversion inverts both of these data sets simultaneously; hence, it is considered superior to simultaneous impedance inversion. However, the success of joint impedance inversion depends on how accurately the PS data are mapped on the PP time domain. Normally, this is attempted by performing well-to-seismic ties for PP and PS data sets and matching different horizons picked on PP and PS data. Although it seems to be a straightforward approach, there are a few issues associated with it. One of them is the lower resolution of the PS data compared with the PP data that presents difficulties in the correlation of the equivalent reflection events on both the data sets. Even after a few consistent horizons get tracked, the horizon matching process introduces some artifacts on the PS data when mapped into PP time. We have evaluated such challenges using a data set from the Western Canadian Sedimentary Basin and then develop a novel workflow for addressing them. The importance of our workflow was determined by comparing data examples generated with and without its adoption.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. V213-V225 ◽  
Author(s):  
Shaohuan Zu ◽  
Hui Zhou ◽  
Yangkang Chen ◽  
Shan Qu ◽  
Xiaofeng Zou ◽  
...  

We have designed a periodically varying code that can avoid the problem of the local coherency and make the interference distribute uniformly in a given range; hence, it was better at suppressing incoherent interference (blending noise) and preserving coherent useful signals compared with a random dithering code. We have also devised a new form of the iterative method to remove interference generated from the simultaneous source acquisition. In each iteration, we have estimated the interference using the blending operator following the proposed formula and then subtracted the interference from the pseudodeblended data. To further eliminate the incoherent interference and constrain the inversion, the data were then transformed to an auxiliary sparse domain for applying a thresholding operator. During the iterations, the threshold was decreased from the largest value to zero following an exponential function. The exponentially decreasing threshold aimed to gradually pass the deblended data to a more acceptable model subspace. Two numerically blended synthetic data sets and one numerically blended practical field data set from an ocean bottom cable were used to demonstrate the usefulness of our proposed method and the better performance of the periodically varying code over the traditional random dithering code.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. S99-S110
Author(s):  
Daniel A. Rosales ◽  
Biondo Biondi

A new partial-prestack migration operator to manipulate multicomponent data, called converted-wave azimuth moveout (PS-AMO), transforms converted-wave prestack data with an arbitrary offset and azimuth to equivalent data with a new offset and azimuth position. This operator is a sequential application of converted-wave dip moveout and its inverse. As expected, PS-AMO reduces to the known expression of AMO for the extreme case when the P velocity is the same as the S velocity. Moreover, PS-AMO preserves the resolution of dipping events and internally applies a correction for the lateral shift between the common-midpoint and the common-reflection/conversion point. An implementation of PS-AMO in the log-stretch frequency-wavenumber domain is computationally efficient. The main applications for the PS-AMO operator are geometry regularization, data-reduction through partial stacking, and interpolation of unevenly sampled data. We test our PS-AMO operator by solving 3D acquisition geometry-regularization problems for multicomponent, ocean-bottom seismic data. The geometry-regularization problem is defined as a regularized least-squares-objective function. To preserve the resolution of dipping events, the regularization term uses the PS-AMO operator. Application of this methodology on a portion of the Alba 3D, multicomponent, ocean-bottom seismic data set shows that we can satisfactorily obtain an interpolated data set that honors the physics of converted waves.


Sign in / Sign up

Export Citation Format

Share Document