An anti‐dispersion wave equation based on the predictor‐corrector method for seismic modeling and reverse time migration

2010 ◽  
Author(s):  
Wellington C. R. Nascimento ◽  
Reynam C. Pestana
2021 ◽  
Vol 11 (7) ◽  
pp. 3010
Author(s):  
Hao Liu ◽  
Xuewei Liu

The lack of an initial condition is one of the major challenges in full-wave-equation depth extrapolation. This initial condition is the vertical partial derivative of the surface wavefield and cannot be provided by the conventional seismic acquisition system. The traditional solution is to use the wavefield value of the surface to calculate the vertical partial derivative by assuming that the surface velocity is constant. However, for seismic exploration on land, the surface velocity is often not uniform. To solve this problem, we propose a new method for calculating the vertical partial derivative from the surface wavefield without making any assumptions about the surface conditions. Based on the calculated derivative, we implemented a depth-extrapolation-based full-wave-equation migration from topography using the direct downward continuation. We tested the imaging performance of our proposed method with several experiments. The results of the Marmousi model experiment show that our proposed method is superior to the conventional reverse time migration (RTM) algorithm in terms of imaging accuracy and amplitude-preserving performance at medium and deep depths. In the Canadian Foothills model experiment, we proved that our method can still accurately image complex structures and maintain amplitude under topographic scenario.


Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.


2014 ◽  
Vol 962-965 ◽  
pp. 2984-2987
Author(s):  
Jia Jia Yang ◽  
Bing Shou He ◽  
Ting Chen

Based on two-way acoustic wave equation, we present a method for computing angle-domain common-image gathers for reverse time migration. The method calculates the propagation direction of source wave-fields and receiver wave-fields according to expression of energy flow density vectors (Poynting vectors) of acoustic wave equation in space-time domain to obtain the reflection angle, then apply the normalized cross-correlation imaging condition to achieve the angle-domain common-image gathers. The angle gathers obtained can be used for migration velocity analysis, AVA analysis and so on. Numerical examples and real data examples demonstrate the effectiveness of this method.


Geophysics ◽  
1997 ◽  
Vol 62 (3) ◽  
pp. 906-917 ◽  
Author(s):  
Jinming Zhu ◽  
Larry R. Lines

Reverse‐time migration applies finite‐difference wave equation solutions by using unaliased time‐reversed recorded traces as seismic sources. Recorded data can be sparsely or irregularly sampled relative to a finely spaced finite‐difference mesh because of the nature of seismic acquisition. Fortunately, reliable interpolation of missing traces is implicitly included in the reverse‐time wave equation computations. This implicit interpolation is essentially based on the ability of the wavefield to “heal itself” during propagation. Both synthetic and real data examples demonstrate that reverse‐time migration can often be performed effectively without the need for explicit interpolation of missing traces.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S81-S93 ◽  
Author(s):  
Mikhail M. Popov ◽  
Nikolay M. Semtchenok ◽  
Peter M. Popov ◽  
Arie R. Verdel

Seismic depth migration aims to produce an image of seismic reflection interfaces. Ray methods are suitable for subsurface target-oriented imaging and are less costly compared to two-way wave-equation-based migration, but break down in cases when a complex velocity structure gives rise to the appearance of caustics. Ray methods also have difficulties in correctly handling the different branches of the wavefront that result from wave propagation through a caustic. On the other hand, migration methods based on the two-way wave equation, referred to as reverse-time migration, are known to be capable of dealing with these problems. However, they are very expensive, especially in the 3D case. It can be prohibitive if many iterations are needed, such as for velocity-model building. Our method relies on the calculation of the Green functions for the classical wave equation by per-forming a summation of Gaussian beams for the direct and back-propagated wavefields. The subsurface image is obtained by cal-culating the coherence between the direct and backpropagated wavefields. To a large extent, our method combines the advantages of the high computational speed of ray-based migration with the high accuracy of reverse-time wave-equation migration because it can overcome problems with caustics, handle all arrivals, yield good images of steep flanks, and is readily extendible to target-oriented implementation. We have demonstrated the quality of our method with several state-of-the-art benchmark subsurface models, which have velocity variations up to a high degree of complexity. Our algorithm is especially suited for efficient imaging of selected subsurface subdomains, which is a large advantage particularly for 3D imaging and velocity-model refinement applications such as subsalt velocity-model improvement. Because our method is also capable of providing highly accurate migration results in structurally complex subsurface settings, we have also included the concept of true-amplitude imaging in our migration technique.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. S199-S216
Author(s):  
Xinru Mu ◽  
Jianping Huang ◽  
Jidong Yang ◽  
Xu Guo ◽  
Yundong Guo

Anisotropy is a common phenomenon in subsurface strata and should be considered in seismic imaging and inversion. Seismic imaging in a vertical transversely isotropic (VTI) medium does not take into account the effects of the tilt angles, which can lead to degraded migrated images in areas with strong anisotropy. To correct such waveform distortion, reduce related image artifacts, and improve migration resolution, a tilted transversely isotropic (TTI) least-squares reverse time migration (LSRTM) method is presented. In the LSRTM, a pure qP-wave equation is used and solved with the finite-difference method. We have analyzed the stability condition for the pure qP-wave equation using the matrix method, which is used to ensure the stability of wave propagation in the TTI medium. Based on this wave equation, we derive a corresponding demigration (Born modeling) and adjoint migration operators to implement TTI LSRTM. Numerical tests on the synthetic data show the advantages of TTI LSRTM over VTI RTM and VTI LSRTM when the recorded data contain strong effects caused by large tilt angles. Our numerical experiments illustrate that the sensitivity of the adopted TTI LSRTM to the migration velocity errors is much higher than that to the anisotropic parameters (including epsilon, delta, and tilted angle parameters), and its sensitivity to the epsilon model and tilt angle is higher than that to the delta model.


Sign in / Sign up

Export Citation Format

Share Document