Long-offset time-lapse seismic: Tested on the Valhall LoFS data

Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. O1-O13 ◽  
Author(s):  
Hossein Mehdi Zadeh ◽  
Martin Landrø ◽  
Olav Inge Barkved

Conventional time-lapse seismic has been less successful for stiff-rock reservoir monitoring, such as carbonates. This is mainly because of the negligible time-lapse changes in the seismic properties. Therefore, we propose to use long-offset time-lapse seismic as an alternative method to estimate small velocity changes. More specifically, we monitor the maximum amplitude offset that is beyond critical offset. The properties of the maximum amplitude offset are similar to critical offset, except that they appear for longer offsets and are frequency dependent. Increased frequency reduces the gap between this offset and the critical offset. We find that the maximum amplitude offset is a function of overburden and reservoir velocity and practically independent of density. This method requires a velocity increase across the interface that is to be analyzed. This criterion usually is satisfied for stiff-rock reservoirs. Also, by long-offset acquisition, we mean typically 1 to 2 km beyond the critical offset for typical depths. The method is tested on the Valhall chalk field in the North Sea. The predicted velocity change using this method is in-line with an independent acoustic impedance study. The velocity changes quantitatively match reasonably well with the synthetic data.

Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. Q67-Q78 ◽  
Author(s):  
Yi Liu ◽  
Martin Landrø ◽  
Børge Arntsen ◽  
Joost van der Neut ◽  
Kees Wapenaar

For a robust way of estimating time shifts near horizontal boreholes, we have developed a method for separating the reflection responses above and below a horizontal borehole. Together with the surface reflection data, the method uses the direct arrivals from borehole data in the Marchenko method. The first step is to retrieve the focusing functions and the up-down wavefields at the borehole level using an iterative Marchenko scheme. The second step is to solve two linear equations using a least-squares minimizing method for the two desired reflection responses. Then, the time shifts that are directly linked to the changes on either side of the borehole are calculated using a standard crosscorrelation technique. The method is applied with good results to synthetic 2D pressure data from the North Sea. One example uses purely artificial velocity changes (negative above the borehole and positive below), and the other example uses more realistic changes based on well logs. In the 2D case with an adequate survey coverage at the surface, the method is completely data driven. In the 3D case in which there is a limited number of horizontal wells, a kinematic correct velocity model is needed, but only for the volume between the surface and the borehole. Possible error factors related to the Marchenko scheme, such as an inaccurate source wavelet, imperfect surface multiples removal, and medium with loss are not included in this study.


2000 ◽  
Vol 19 (3) ◽  
pp. 286-293 ◽  
Author(s):  
Klaas Koster ◽  
Pieter Gabriels ◽  
Matthias Hartung ◽  
John Verbeek ◽  
Geurt Deinum ◽  
...  

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C81-C92 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Hilde Grude Borgos ◽  
Martin Landrø

Effects of pressure and fluid saturation can have the same degree of impact on seismic amplitudes and differential traveltimes in the reservoir interval; thus, they are often inseparable by analysis of a single stacked seismic data set. In such cases, time-lapse AVO analysis offers an opportunity to discriminate between the two effects. We quantify the uncertainty in estimations to utilize information about pressure- and saturation-related changes in reservoir modeling and simulation. One way of analyzing uncertainties is to formulate the problem in a Bayesian framework. Here, the solution of the problem will be represented by a probability density function (PDF), providing estimations of uncertainties as well as direct estimations of the properties. A stochastic model for estimation of pressure and saturation changes from time-lapse seismic AVO data is investigated within a Bayesian framework. Well-known rock physical relationships are used to set up a prior stochastic model. PP reflection coefficient differences are used to establish a likelihood model for linking reservoir variables and time-lapse seismic data. The methodology incorporates correlation between different variables of the model as well as spatial dependencies for each of the variables. In addition, information about possible bottlenecks causing large uncertainties in the estimations can be identified through sensitivity analysis of the system. The method has been tested on 1D synthetic data and on field time-lapse seismic AVO data from the Gullfaks Field in the North Sea.


2019 ◽  
Vol 7 (2) ◽  
pp. SB23-SB31
Author(s):  
Chang Li ◽  
Mark Meadows ◽  
Todd Dygert

We have developed a new trace-based, warping least-squares inversion method to quantify 4D velocity changes. There are two steps to solve for these velocity changes: (1) dynamic warping with phase constraints to align the baseline and monitor traces and (2) least-squares inversion for 4D velocity changes incorporating the time shifts and 4D amplitude differences (computed after trace alignment by warping). We have demonstrated this new inversion workflow using simple synthetic layered models. For the noise-free case, phase-constrained warping is superior to standard, amplitude-based warping by improving trace alignment, resulting in more accurate inverted velocity changes (less than 1% error). For synthetic data with 6% rms noise, inverted velocity changes are reasonably accurate (less than 10% error). Additional inversion tests with migrated finite-difference data shot over a realistic anticline model result in less than 10% error. The inverted velocity changes on a 4D field data set from the Gulf of Mexico are more interpretable and consistent with the dynamic reservoir model than those estimated from the conventional time-strain method.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. MR297-MR308
Author(s):  
Roberta Ruggieri ◽  
Fabio Trippetta

Variations in reservoir seismic properties can be correlated to changes in saturated-fluid properties. Thus, the determination of variation in petrophysical properties of carbonate-bearing rocks is of interest to the oil exploration industry because unconventional oils, such as bitumen (HHC), are emerging as an alternative hydrocarbon reserve. We have investigated the temperature effects on laboratory seismic wave velocities of HHC-bearing carbonate rocks belonging to the Bolognano Formation (Majella Mountain, central Italy), which can be defined as a natural laboratory to study carbonate reservoir properties. We conduct an initial characterization in terms of porosity and density for the carbonate-bearing samples and then density and viscosity measurements for the residual HHC, extracted by HCl dissolution of the hosting rock. Acoustic wave velocities are recorded from ambient temperature to 90°C. Our acoustic velocity data point out an inverse relationship with temperature, and compressional (P) and shear (S) wave velocities show a distinct trend with increasing temperature depending on the amount of HHC content. Indeed, samples with the highest HHC content show a larger gradient of velocity changes in the temperature range of approximately 50°C–60°C, suggesting that the bitumen can be in a fluid state. Conversely, below approximately 50°C, the velocity gradient is lower because, at this temperature, bitumen can change its phase in a solid state. We also propose a theoretical model to predict the P-wave velocity change at different initial porosities for HHC-saturated samples suggesting that the velocity change mainly is related to the absolute volume of HHC.


Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1303-1309 ◽  
Author(s):  
Ola Eiken ◽  
Geir Ultveit Haugen ◽  
Michel Schonewille ◽  
Adri Duijndam

Seismic reservoir monitoring has become an important tool in the management of many fields. Monitoring subtle changes in the seismic properties of a reservoir caused by production places strong demands on seismic repeatability. A lack of repeatability limits how frequently reservoir changes can be monitored or the applicability of seismic monitoring at all. In this paper we show that towing many streamers with narrow separation, combined with cross‐line interpolation of data onto predefined sail lines, can give highly repeatable marine seismic data. Results from two controlled zero time lag monitoring experiments in the North Sea demonstrate high sensitivity to changing water level and variations in lateral positions. After corrections by deterministic tidal time shifts and spatial interpolation of the irregularly sampled streamer data, relative rms difference amplitude levels are as low as 12% for a deep, structurally complex field and as low as 6% for a shallow, structurally simple field. Reducing the degree of nonrepeatability to as low as 6% to 12% allows monitoring of smaller reflectivity changes. In terms of reservoir management this has three important benefits: (1) reservoirs with small seismic changes resulting from production can be monitored, (2) reservoirs with large seismic changes can be monitored more frequently, and (3) monitoring data can be used more quantitatively.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. B135-B146 ◽  
Author(s):  
Hung Nho Dinh ◽  
Mirko van der Baan ◽  
Martin Landrø

Many vintage reflection seismic surveys exist that have nonrepeated acquisition geometries or final-stacked/migrated sections are obtained using different or nonconsistent processing flows. This may lead to derived time-lapse attributes that are not internally consistent or even conflicting. For instance, we have focused on a subsurface gas blowout that occurred in 1989 in the Norwegian sector of the North Sea. The 2D site survey data were acquired in 1988 and 1990, and the 3D data were acquired in 1991 and 2005. The various sets of legacy data are plagued by poor repeatability among data acquisitions, application of different processing strategies, missing prestack data, and the presence of multiples. All of these factors severely complicate even qualitative interpretation of the gas migration associated with the underground blowout. Careful time-lapse processing may provide useful information even from such challenging legacy data by first computing numerous attributes including instantaneous amplitude differences, time shifts, time-lapse attenuation, and impedance inversions. Then, judicious quality control, invoked by comparing the various attributes, was used to check for internally consistent results.


Geophysics ◽  
1988 ◽  
Vol 53 (10) ◽  
pp. 1347-1354 ◽  
Author(s):  
Song Cao ◽  
Ian Lerche ◽  
Christian Hermanrud

Using nonlinear inverse techniques, we show that the change in borehole temperature with time, after mud circulation has stopped, can be used to provide very precise estimates of true formation temperatures and of mud temperature at the time circulation stopped. In addition, ruggedly stable estimates can also be made of the thermal invasion distance, the formation thermal conductivity, and the efficiency of heating the mud by the thermal recovery wave. It is well known that convective heat flow into (or out of) the formation influences the thermal recovery. We show that the flow rate at the borehole can also be obtained approximately from the borehole temperature measurements using the inverse method. Fidelity and reproducibility of the inverse procedure arc examined using synthetic data. Applications to field data from three wells in the Cooper basin of Australia and four wells in the North Sea confirm the accuracy of the method in satisfying the observed data, in determining true formation temperatures, and in assessing the magnitude of fluid penetration into the formation.


Geophysics ◽  
2004 ◽  
Vol 69 (4) ◽  
pp. 949-957 ◽  
Author(s):  
Martin Landrø ◽  
Jan Stammeijer

In some hydrocarbon reservoirs, severe compaction of the reservoir rocks is observed. This compaction is caused by production, and it is often associated with changes in the overburden. Time‐lapse (or 4D) seismic data are used to monitor this compaction process. Since the compaction causes changes in both layer thickness and seismic velocities, it is crucial to distinguish between the two effects. Two new seismic methods for monitoring compacting reservoirs are introduced, one based on measured seismic prestack traveltime changes, and the other based on poststack traveltime and amplitude changes. In contrast to earlier methods, these methods do not require additional empirical relationships, such as, for instance, a velocity‐porosity relationship. The uncertainties in estimates for compaction and velocity change are expressed in terms of errors in the traveltime and amplitude measurements. These errors are directly related to the quality and repeatability of time‐lapse seismic data. For a reservoir at 3000‐m depth with 9 m of compaction, and assuming a 4D timeshift error of 0.5 ms at near offset and 2 ms at far offset, we find relative uncertainty in the compaction estimate of approximately 50–60% using traveltime information only.


1998 ◽  
Author(s):  
D.H. Johnston ◽  
R.S. McKenny ◽  
T.D. Burkhart

Sign in / Sign up

Export Citation Format

Share Document