Linearized AVO and poroelasticity

Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. C19-C29 ◽  
Author(s):  
Brian H. Russell ◽  
David Gray ◽  
Daniel P. Hampson

The technique of amplitude variation with offset (AVO) allows geoscientists to extract fluid and lithology information from the analysis of prestack seismic amplitudes. Various AVO parameterizations exist, all of which involve the sum of three weighted elastic-constant terms. In present-day AVO approaches, the weighting terms involve either knowledge of the incidence angle only, or knowledge of both the incidence angle and the in situ VP/VS ratio. We have used the theory of poroelasticity to derive a generalized AVO approximation that provides the estimation of fluid, rigidity, and density parameters. We have combined two previously independent AVO formulations, thus reducing, instead of adding to, the total number of formulations. This new approach requires knowledge of a third parameter to compute the weights: the dry-rock VP/VS ratio. We have derived a new equation and applied it to model and real data sets. The new formulation has allowed us to estimate fluid properties of the reservoir in a more direct manner than previous formulations.

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. D625-D641 ◽  
Author(s):  
Dario Grana

The estimation of rock and fluid properties from seismic attributes is an inverse problem. Rock-physics modeling provides physical relations to link elastic and petrophysical variables. Most of these models are nonlinear; therefore, the inversion generally requires complex iterative optimization algorithms to estimate the reservoir model of petrophysical properties. We have developed a new approach based on the linearization of the rock-physics forward model using first-order Taylor series approximations. The mathematical method adopted for the inversion is the Bayesian approach previously applied successfully to amplitude variation with offset linearized inversion. We developed the analytical formulation of the linearized rock-physics relations for three different models: empirical, granular media, and inclusion models, and we derived the formulation of the Bayesian rock-physics inversion under Gaussian assumptions for the prior distribution of the model. The application of the inversion to real data sets delivers accurate results. The main advantage of this method is the small computational cost due to the analytical solution given by the linearization and the Bayesian Gaussian approach.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. V223-V232 ◽  
Author(s):  
Zhicheng Geng ◽  
Xinming Wu ◽  
Sergey Fomel ◽  
Yangkang Chen

The seislet transform uses the wavelet-lifting scheme and local slopes to analyze the seismic data. In its definition, the designing of prediction operators specifically for seismic images and data is an important issue. We have developed a new formulation of the seislet transform based on the relative time (RT) attribute. This method uses the RT volume to construct multiscale prediction operators. With the new prediction operators, the seislet transform gets accelerated because distant traces get predicted directly. We apply our method to synthetic and real data to demonstrate that the new approach reduces computational cost and obtains excellent sparse representation on test data sets.


2020 ◽  
Vol 76 (8) ◽  
pp. 790-801 ◽  
Author(s):  
Joshua M. Lawrence ◽  
Julien Orlans ◽  
Gwyndaf Evans ◽  
Allen M. Orville ◽  
James Foadi ◽  
...  

In this article, a new approach to experimental phasing for macromolecular crystallography (MX) at synchrotrons is introduced and described for the first time. It makes use of automated robotics applied to a multi-crystal framework in which human intervention is reduced to a minimum. Hundreds of samples are automatically soaked in heavy-atom solutions, using a Labcyte Inc. Echo 550 Liquid Handler, in a highly controlled and optimized fashion in order to generate derivatized and isomorphous crystals. Partial data sets obtained on MX beamlines using an in situ setup for data collection are processed with the aim of producing good-quality anomalous signal leading to successful experimental phasing.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-7
Author(s):  
Yadgar Sirwan Abdulrahman

Clustering is one of the essential strategies in data analysis. In classical solutions, all features are assumed to contribute equally to the data clustering. Of course, some features are more important than others in real data sets. As a result, essential features will have a more significant impact on identifying optimal clusters than other features. In this article, a fuzzy clustering algorithm with local automatic weighting is presented. The proposed algorithm has many advantages such as: 1) the weights perform features locally, meaning that each cluster's weight is different from the rest. 2) calculating the distance between the samples using a non-euclidian similarity criterion to reduce the noise effect. 3) the weight of the features is obtained comparatively during the learning process. In this study, mathematical analyzes were done to obtain the clustering centers well-being and the features' weights. Experiments were done on the data set range to represent the progressive algorithm's efficiency compared to other proposed algorithms with global and local features


Author(s):  
LEV V. UTKIN

A new approach for ensemble construction based on restricting a set of weights of examples in training data to avoid overfitting is proposed in the paper. The algorithm called EPIBoost (Extreme Points Imprecise Boost) applies imprecise statistical models to restrict the set of weights. The updating of the weights within the restricted set is carried out by using its extreme points. The approach allows us to construct various algorithms by applying different imprecise statistical models for producing the restricted set. It is shown by various numerical experiments with real data sets that the EPIBoost algorithm may outperform the standard AdaBoost for some parameters of imprecise statistical models.


2011 ◽  
Vol 1 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Hamada M. Zahera ◽  
Gamal F. El-Hady ◽  
W. F. Abd El-Wahed

As web contents grow, the importance of search engines become more critical and at the same time user satisfaction decreases. Query recommendation is a new approach to improve search results in web. In this paper a method is proposed that, given a query submitted to a search engine, suggests a list of queries that are related to the user input query. The related queries are based on previously issued queries, and can be issued by the user to the search engine to tune or redirect the search process. The proposed method is based on clustering processes in which groups of semantically similar queries are detected. The clustering process uses the content of historical preferences of users registered in the query log of the search engine. This facility provides queries that are related to the ones submitted by users in order to direct them toward their required information. This method not only discovers the related queries but also ranks them according to a similarity measure. The method has been evaluated using real data sets from the search engine query log.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. N1-N14 ◽  
Author(s):  
Brian H. Russell ◽  
Ken J. Hedlin

Linearized approximations to the P-wave reflectivity as a function of the incidence angle (called amplitude variation with offset) involve the extraction of band-limited reflectivity terms that are a function of changes in the elastic constants of the earth across each lithologic interface. The most common of these extracted reflectivities are the intercept and gradient, usually labeled [Formula: see text] and [Formula: see text], respectively. The extended elastic impedance (EEI) method uses a rotation angle [Formula: see text] to map [Formula: see text] and [Formula: see text] into a new reflectivity corresponding to a particular elastic parameter. The success of EEI depends on finding an optimum value for the angle [Formula: see text]. This value is usually calculated by correlating the EEI result over a range of [Formula: see text] angles with various elastic parameters and then finding the best correlation coefficient. We have developed a new approach for the interpretation of the EEI method, which incorporates the Biot-Gassmann poroelastic theory and attaches a physical meaning to the [Formula: see text] angle. We call this method extended poroelastic impedance (EPI). The main advantage of the EPI method is that the [Formula: see text] angle is now interpreted as a parameter that is dependent on the dry-rock properties of the reservoir, rather than a parameter whose value is estimated empirically. The method is evaluated by numerical and synthetic seismic examples and by application to field data from a gas sand reservoir.


2021 ◽  
Vol 25 (3) ◽  
pp. 687-710
Author(s):  
Mostafa Boskabadi ◽  
Mahdi Doostparast

Regression trees are powerful tools in data mining for analyzing data sets. Observations are usually divided into homogeneous groups, and then statistical models for responses are derived in the terminal nodes. This paper proposes a new approach for regression trees that considers the dependency structures among covariates for splitting the observations. The mathematical properties of the proposed method are discussed in detail. To assess the accuracy of the proposed model, various criteria are defined. The performance of the new approach is assessed by conducting a Monte-Carlo simulation study. Two real data sets on classification and regression problems are analyzed by using the obtained results.


Author(s):  
Hamada M. Zahera ◽  
Gamal F. El-Hady ◽  
W. F. Abd El-Wahed

As web contents grow, the importance of search engines become more critical and at the same time user satisfaction decreases. Query recommendation is a new approach to improve search results in web. In this paper a method is proposed that, given a query submitted to a search engine, suggests a list of queries that are related to the user input query. The related queries are based on previously issued queries, and can be issued by the user to the search engine to tune or redirect the search process. The proposed method is based on clustering processes in which groups of semantically similar queries are detected. The clustering process uses the content of historical preferences of users registered in the query log of the search engine. This facility provides queries that are related to the ones submitted by users in order to direct them toward their required information. This method not only discovers the related queries but also ranks them according to a similarity measure. The method has been evaluated using real data sets from the search engine query log.


2019 ◽  
Vol 8 (2) ◽  
pp. 159
Author(s):  
Morteza Marzjarani

Heteroscedasticity plays an important role in data analysis. In this article, this issue along with a few different approaches for handling heteroscedasticity are presented. First, an iterative weighted least square (IRLS) and an iterative feasible generalized least square (IFGLS) are deployed and proper weights for reducing heteroscedasticity are determined. Next, a new approach for handling heteroscedasticity is introduced. In this approach, through fitting a multiple linear regression (MLR) model or a general linear model (GLM) to a sufficiently large data set, the data is divided into two parts through the inspection of the residuals based on the results of testing for heteroscedasticity, or via simulations. The first part contains the records where the absolute values of the residuals could be assumed small enough to the point that heteroscedasticity would be ignorable. Under this assumption, the error variances are small and close to their neighboring points. Such error variances could be assumed known (but, not necessarily equal).The second or the remaining portion of the said data is categorized as heteroscedastic. Through real data sets, it is concluded that this approach reduces the number of unusual (such as influential) data points suggested for further inspection and more importantly, it will lowers the root MSE (RMSE) resulting in a more robust set of parameter estimates.


Sign in / Sign up

Export Citation Format

Share Document