Relative time seislet transform

Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. V223-V232 ◽  
Author(s):  
Zhicheng Geng ◽  
Xinming Wu ◽  
Sergey Fomel ◽  
Yangkang Chen

The seislet transform uses the wavelet-lifting scheme and local slopes to analyze the seismic data. In its definition, the designing of prediction operators specifically for seismic images and data is an important issue. We have developed a new formulation of the seislet transform based on the relative time (RT) attribute. This method uses the RT volume to construct multiscale prediction operators. With the new prediction operators, the seislet transform gets accelerated because distant traces get predicted directly. We apply our method to synthetic and real data to demonstrate that the new approach reduces computational cost and obtains excellent sparse representation on test data sets.

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. D625-D641 ◽  
Author(s):  
Dario Grana

The estimation of rock and fluid properties from seismic attributes is an inverse problem. Rock-physics modeling provides physical relations to link elastic and petrophysical variables. Most of these models are nonlinear; therefore, the inversion generally requires complex iterative optimization algorithms to estimate the reservoir model of petrophysical properties. We have developed a new approach based on the linearization of the rock-physics forward model using first-order Taylor series approximations. The mathematical method adopted for the inversion is the Bayesian approach previously applied successfully to amplitude variation with offset linearized inversion. We developed the analytical formulation of the linearized rock-physics relations for three different models: empirical, granular media, and inclusion models, and we derived the formulation of the Bayesian rock-physics inversion under Gaussian assumptions for the prior distribution of the model. The application of the inversion to real data sets delivers accurate results. The main advantage of this method is the small computational cost due to the analytical solution given by the linearization and the Bayesian Gaussian approach.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. WB113-WB120 ◽  
Author(s):  
Sheng Xu ◽  
Yu Zhang ◽  
Gilles Lambaré

Wide-azimuth seismic data sets are generally acquired more sparsely than narrow-azimuth seismic data sets. This brings new challenges to seismic data regularization algorithms, which aim to reconstruct seismic data for regularly sampled acquisition geometries from seismic data recorded from irregularly sampled acquisition geometries. The Fourier-based seismic data regularization algorithm first estimates the spatial frequency content on an irregularly sampled input grid. Then, it reconstructs the seismic data on any desired grid. Three main difficulties arise in this process: the “spectral leakage” problem, the accurate estimation of Fourier components, and the effective antialiasing scheme used inside the algorithm. The antileakage Fourier transform algorithm can overcome the spectral leakage problem and handles aliased data. To generalize it to higher dimensions, we propose an area weighting scheme to accurately estimate the Fourier components. However, the computational cost dramatically increases with the sampling dimensions. A windowed Fourier transform reduces the computational cost in high-dimension applications but causes undersampling in wavenumber domain and introduces some artifacts, known as Gibbs phenomena. As a solution, we propose a wavenumber domain oversampling inversion scheme. The robustness and effectiveness of the proposed algorithm are demonstrated with some applications to both synthetic and real data examples.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. C19-C29 ◽  
Author(s):  
Brian H. Russell ◽  
David Gray ◽  
Daniel P. Hampson

The technique of amplitude variation with offset (AVO) allows geoscientists to extract fluid and lithology information from the analysis of prestack seismic amplitudes. Various AVO parameterizations exist, all of which involve the sum of three weighted elastic-constant terms. In present-day AVO approaches, the weighting terms involve either knowledge of the incidence angle only, or knowledge of both the incidence angle and the in situ VP/VS ratio. We have used the theory of poroelasticity to derive a generalized AVO approximation that provides the estimation of fluid, rigidity, and density parameters. We have combined two previously independent AVO formulations, thus reducing, instead of adding to, the total number of formulations. This new approach requires knowledge of a third parameter to compute the weights: the dry-rock VP/VS ratio. We have derived a new equation and applied it to model and real data sets. The new formulation has allowed us to estimate fluid properties of the reservoir in a more direct manner than previous formulations.


Geophysics ◽  
2012 ◽  
Vol 77 (1) ◽  
pp. A5-A8 ◽  
Author(s):  
David Bonar ◽  
Mauricio Sacchi

The nonlocal means algorithm is a noise attenuation filter that was originally developed for the purposes of image denoising. This algorithm denoises each sample or pixel within an image by utilizing other similar samples or pixels regardless of their spatial proximity, making the process nonlocal. Such a technique places no assumptions on the data except that structures within the data contain a degree of redundancy. Because this is generally true for reflection seismic data, we propose to adopt the nonlocal means algorithm to attenuate random noise in seismic data. Tests with synthetic and real data sets demonstrate that the nonlocal means algorithm does not smear seismic energy across sharp discontinuities or curved events when compared to seismic denoising methods such as f-x deconvolution.


Geophysics ◽  
2003 ◽  
Vol 68 (1) ◽  
pp. 225-231 ◽  
Author(s):  
Rongfeng Zhang ◽  
Tadeusz J. Ulrych

This paper deals with the design and implementation of a new wavelet frame for noise suppression based on the character of seismic data. In general, wavelet denoising methods widely used in image and acoustic processing use well‐known conventional wavelets which, although versatile, are often not optimal for seismic data. The new approach, physical wavelet frame denoising uses a wavelet frame that takes into account the characteristics of seismic data both in time and space. Synthetic and real data tests show that the approach is effective even for seismic signals contaminated by strong noise which may be random or coherent, such as ground roll or air waves.


Author(s):  
Maxim I. Protasov ◽  
◽  
Vladimir A. Tcheverda ◽  
Valery V. Shilikov ◽  
◽  
...  

The paper deals with a 3D diffraction imaging with the subsequent diffraction attribute calculation. The imaging is based on an asymmetric summation of seismic data and provides three diffraction attributes: structural diffraction attribute, point diffraction attribute, an azimuth of structural diffraction. These attributes provide differentiating fractured and cavernous objects and to determine the fractures orientations. Approbation of the approach was provided on several real data sets.


2006 ◽  
Vol 18 (6) ◽  
pp. 765-771 ◽  
Author(s):  
Haruhisa Okuda ◽  
◽  
Yasuo Kitaaki ◽  
Manabu Hashimoto ◽  
Shun’ichi Kaneko ◽  
...  

This paper presents a novel fast and highly accurate 3-D registration algorithm. The ICP (Iterative Closest Point) algorithm converges all the 3-D data points of two data sets to the best-matching points with minimum evaluation values. This algorithm is in widespread use because it has good validity for many applications, but it extracts a heavy computational cost and is very sensitive to error. This is because it uses all the data points of two data sets and least mean square optimization. We previously proposed the M-ICP algorithm, which uses M-estimation to realize robustness against outlying gross noise with the original ICP algorithm. In this paper, we propose a novel algorithm called HM-ICP (Hierarchical M-ICP), which is an extension of the M-ICP that selects regions for matching and hierarchical searching of selected regions. This method selects regions by evaluating the variance of distance values in the target region, and homogeneous topological mapping. Some fundamental experiments using real data sets of 3-D measurement demonstrate the effectiveness of the proposed method, achieving a reduction of more than ten thousand times for computational costs. We also confirmed an error of less than 0.1% for the measurement distance.


2020 ◽  
Vol 39 (10) ◽  
pp. 711-717
Author(s):  
Mehdi Aharchaou ◽  
Michael Matheney ◽  
Joe Molyneux ◽  
Erik Neumann

Recent demands to reduce turnaround times and expedite investment decisions in seismic exploration have invited new ways to process and interpret seismic data. Among these ways is a more integrated collaboration between seismic processors and geologist interpreters aiming to build preliminary geologic models for early business impact. A key aspect has been quick and streamlined delivery of clean high-fidelity 3D seismic images via postmigration filtering capabilities. We present a machine learning-based example of such a capability built on recent advances in deep learning systems. In particular, we leverage the power of Siamese neural networks, a new class of neural networks that is powerful at learning discriminative features. Our novel adaptation, edge-aware filtering, employs a deep Siamese network that ranks similarity between seismic image patches. Once the network is trained, we capitalize on the learned features and self-similarity property of seismic images to achieve within-image stacking power endowed with edge awareness. The method generalizes well to new data sets due to the few-shot learning ability of Siamese networks. Furthermore, the learning-based framework can be extended to a variety of noise types in 3D seismic data. Using a convolutional architecture, we demonstrate on three field data sets that the learned representations lead to superior filtering performance compared to structure-oriented filtering. We examine both filtering quality and ease of application in our analysis. Then, we discuss the potential of edge-aware filtering as a data conditioning tool for rapid structural interpretation.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. R59-R67 ◽  
Author(s):  
Igor B. Morozov ◽  
Jinfeng Ma

The seismic-impedance inversion problem is underconstrained inherently and does not allow the use of rigorous joint inversion. In the absence of a true inverse, a reliable solution free from subjective parameters can be obtained by defining a set of physical constraints that should be satisfied by the resulting images. A method for constructing synthetic logs is proposed that explicitly and accurately satisfies (1) the convolutional equation, (2) time-depth constraints of the seismic data, (3) a background low-frequency model from logs or seismic/geologic interpretation, and (4) spectral amplitudes and geostatistical information from spatially interpolated well logs. The resulting synthetic log sections or volumes are interpretable in standard ways. Unlike broadly used joint-inversion algorithms, the method contains no subjectively selected user parameters, utilizes the log data more completely, and assesses intermediate results. The procedure is simple and tolerant to noise, and it leads to higher-resolution images. Separating the seismic and subseismic frequency bands also simplifies data processing for acoustic-impedance (AI) inversion. For example, zero-phase deconvolution and true-amplitude processing of seismic data are not required and are included automatically in this method. The approach is applicable to 2D and 3D data sets and to multiple pre- and poststack seismic attributes. It has been tested on inversions for AI and true-amplitude reflectivity using 2D synthetic and real-data examples.


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. V69-V78 ◽  
Author(s):  
Jinlin Liu ◽  
Wenkai Lu

Adaptive multiple subtraction is the key step of surface-related multiple elimination methods. The main challenge of this technique resides in removing multiples without distorting primaries. We have developed a new pattern-based method for adaptive multiple subtraction with the consideration that primaries can be better protected if the multiples are differentiated from the primaries. Different from previously proposed methods, our method casts the adaptive multiple subtraction problem as a pattern coding and decoding process. We set out to learn distinguishable patterns from the predicted multiples before estimating the multiples contained in seismic data. Hence, in our method, we first carried out pattern coding of the predicted multiples to learn the special patterns of the multiples within different frequency bands. This coding process aims at exploiting the key patterns contained in the predicted multiples. The learned patterns are then used to decode (extract) the multiples contained in the seismic data, in which process those patterns that are similar to the learned patterns were identified and extracted. Because the learned patterns are obtained from the predicted multiples only, our method avoids the interferences of primaries in nature and shows an impressive capability for removing multiples without distorting the primaries. Our applications on synthetic and real data sets gave some promising results.


Sign in / Sign up

Export Citation Format

Share Document