Prestack time migration by common-migrated-reflector-element stacking

Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. S73-S82 ◽  
Author(s):  
Sergius Dell ◽  
Dirk Gajewski ◽  
Claudia Vanelle

Time migration is an attractive tool to produce a subsurface image because it is faster and less sensitive to velocities errors than depth migration. However, a highly focused time image is only achievable with well-determined time-migration velocities. Therefore, a refinement of the initial time-migration velocities often is required. We introduced a new technique for prestack time migration, based on the common-migrated-reflector-element stack of common scatterpoint gathers, including an automatic update of time-migration velocities. The common scatterpoint gathers are generated using a new formulation of the double-square-root equation that is parametrized with the common-offset apex time. The common-migrated-reflector-element stack is a multiparameter stacking technique based on the Taylor expansion of traveltimes of time-migrated reflections in the paraxial vicinity of the image ray. Our 2D synthetic and field data examples demonstrated that the proposed method provides updated time-migration velocities that are more robust and have higher resolution compared with the initial time-migration velocities. The prestack time migration method also showed a clear improvement of the focusing of reflections for such geologic features as faults and salt structures.

2021 ◽  
Vol 18 (2) ◽  
pp. 291-303
Author(s):  
Changshan Han ◽  
Linong Liu ◽  
Zelin Liu ◽  
Zhengwei Li

Abstract We developed a modified topography prestack time migration (PSTM) scheme that can improve the imaging resolution by applying effective Q to topography migration. The computation of the traveltime at each imaging location in the migration is based on the floating datum smoothed by rugged topography. Unlike the common quality factor Q, the effective Q only determines the frequency-dependent amplitude and the traveltime at a single imaging location, which enables us to establish a Q model in an inhomogeneous medium. Hence, we can acquire the effective Q using a scanning technology according to the width of the frequency band and signal-to-noise ratio of the imaging gathers. The proposed migration method can be integrated into the conventional topography migration workflow. Synthetic and three-dimensional (3D) field datasets indicate that the proposed deabsorption PSTM from rugged topography is effective.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S229-S238 ◽  
Author(s):  
Martina Glöckner ◽  
Sergius Dell ◽  
Benjamin Schwarz ◽  
Claudia Vanelle ◽  
Dirk Gajewski

To obtain an image of the earth’s subsurface, time-imaging methods can be applied because they are reasonably fast, are less sensitive to velocity model errors than depth-imaging methods, and are usually easy to parallelize. A powerful tool for time imaging consists of a series of prestack time migrations and demigrations. We have applied multiparameter stacking techniques to obtain an initial time-migration velocity model. The velocity model building proposed here is based on the kinematic wavefield attributes of the common-reflection surface (CRS) method. A subsequent refinement of the velocities uses a coherence filter that is based on a predetermined threshold, followed by an interpolation and smoothing. Then, we perform a migration deconvolution to obtain the final time-migrated image. The migration deconvolution consists of one iteration of least-squares migration with an estimated Hessian. We estimate the Hessian by nonstationary matching filters, i.e., in a data-driven fashion. The model building uses the framework of the CRS, and the migration deconvolution is fully automated. Therefore, minimal user interaction is required to carry out the velocity model refinement and the image update. We apply the velocity refinement and migration deconvolution approaches to complex synthetic and field data.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. S469-S475 ◽  
Author(s):  
Carlos Alberto da Costa Filho ◽  
Andrew Curtis

The objective of prestack depth migration is to position reflectors at their correct subsurface locations. However, migration methods often also generate artifacts along with physical reflectors, which hamper interpretation. These spurious reflectors often appear at different spatial locations in the image depending on which migration method is used. Therefore, we have devised a postimaging filter that combines two imaging conditions to preserve their similarities and to attenuate their differences. The imaging filter is based on combining the two constituent images and their envelopes that were obtained from the complex vertical traces of the images. We have used the method to combine two images resulting from different migration schemes, which produce dissimilar artifacts: a conventional migration method (equivalent to reverse time migration) and a deconvolution-based imaging method. We show how this combination may be exploited to attenuate migration artifacts in a final image. A synthetic model containing a syncline and stochastically generated small-scale heterogeneities in the velocity and density distributions was used for the numerical example. We compared the images in detail at two locations where spurious events arose and also at a true reflector. We found that the combined imaging condition has significantly fewer artifacts than either constituent image individually.


Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. B9-B18 ◽  
Author(s):  
C. Schmelzbach ◽  
C. Juhlin ◽  
R. Carbonell ◽  
J. F. Simancas

Crooked-line 2D seismic reflection survey geometries violate underlying assumptions of 2D imaging routines, affecting our ability to resolve the subsurface reliably. We compare three crooked-line imaging schemes involving prestack and poststack time migration using the 2D IBERSEIS deep seismic reflection profile running over the South Portuguese Zone thrust-and-fold belt to obtain crisp high-resolution images of the shallow crust. The crust is characterized by a complex subsurface geometry with conflicting dips of up to [Formula: see text]. In summary, the three schemes are (1) normal-moveout (NMO) corrections, dip-moveout (DMO) corrections, common-midpoint (CMP) stacking, CMP projection, and poststack time migration; (2) NMO corrections, DMO corrections, CMP projection, zero-offset time migration of the common-offset gathers, and CMP stacking; (3) CMP projection, prestack time migration in the common-offset domain, and CMP stacking. An essential element of all three schemes is a CMP projection routine, projecting the CMPs first binned along individual segments for preprocessing onto one straight line, which is parallel to the general dip direction of the subsurface structures. After CMP projection, the data satisfy the straight-line assumption of 2D imaging routines more closely. We observe that the prestack time-migration scheme yields comparable or more coherent synthetic and field-data images than the other two DMO-based schemes along the parts of the profile where the acquisition overall follows a straight line. However, the schemes involving DMO corrections are less plagued by migration artifacts than the prestack time-migration scheme along profile parts where the acquisition line is crooked. In particular, prominent migration artifacts on the prestack migrated synthetic data can be related to significant variations in source-receiver azimuths for which 2D prestack migration cannot account. Thus, the processing scheme including DMO corrections, CMP projection, and zero-offset migration of common-offset gathers offers a reliable and effective alternative to prestack migration for crooked-line 2D seismic reflection processing.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. S93-S101 ◽  
Author(s):  
Andrej Bóna

Standard migration techniques require a velocity model. A new and fast prestack time migration method is presented that does not require a velocity model as an input. The only input is a shot gather, unlike other velocity-independent migrations that also require input of data in other gathers. The output of the presented migration is a time-migrated image and the migration velocity model. The method uses the first and second derivatives of the traveltimes with respect to the location of the receiver. These attributes are estimated by computing the gradient of the amplitude in a shot gather. The assumptions of the approach are a laterally slowly changing velocity and reflectors with small curvatures; the dip of the reflector can be arbitrary. The migration velocity corresponds to the root mean square (rms) velocity for laterally homogeneous media for near offsets. The migration expressions for 2D and 3D cases are derived from a simple geometrical construction considering the image of the source. The strengths and weaknesses of the methods are demonstrated on synthetic data. At last, the applicability of the method is discussed by interpreting the migration velocity in terms of the Taylor expansion of the traveltime around the zero offset.


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 568-576 ◽  
Author(s):  
Young C. Kim ◽  
Worth B. Hurt, ◽  
Louis J. Maher ◽  
Patrick J. Starich

The transformation of surface seismic data into a subsurface image can be separated into two components—focusing and positioning. Focusing is associated with ensuring the data from different offsets are contributing constructively to the same event. Positioning involves the transformation of the focused events into a depth image consistent with a given velocity model. In prestack depth migration, both of these operations are achieved simultaneously; however, for 3-D data, the cost is significant. Prestack time migration is much more economical and focuses events well even in the presence of moderate velocity variations, but suffers from mispositioning problems. Hybrid migration is a cost‐effective depth‐imaging approach that uses prestack time migration for focusing; inverse migration for the removal of positioning errors; and poststack depth migration for proper positioning. When lateral velocity changes are moderate, the hybrid technique can generate a depth image that is consistent with a velocity field. For very complex structures that require prestack depth migration, the results of the hybrid technique can be used to create a starting velocity model, thereby reducing the number of iterations for velocity model building.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE211-VE216 ◽  
Author(s):  
Jacobus Buur ◽  
Thomas Kühnel

Many production targets in greenfield exploration are found in salt provinces, which have highly complex structures as a result of salt formation over geologic time. Difficult geologic settings, steep dips, and other wave-propagation effects make reverse-time migration (RTM) the migration method of choice, rather than Kirchhoff migration or other (by definition approximate) one-way equation methods. Imaging of the subsurface using any depth-migration algorithm can be done successfully only when the quality of the prior velocity model is sufficient. The (velocity) model-building loop is an iterative procedure for improving the velocity model. This is done by obtaining certain measurements (residual moveout) on image gathers generated during the migration procedure; those measurements then are input into tomographic updating. Commonly RTM is applied around salt bodies, where building the velocity model fails essentially because tomography is ray-trace based. Our idea is to apply RTM directly inside the model-building loop but to do so without using the image gathers. Although the process is costly, we migrate the full frequency content of the data to create a high-quality stack. This enhances the interpretation of top and bottom salt significantly and enables us to include the resulting salt geometry in the velocity model properly. We demonstrate our idea on a 2D West Africa seismic line. After several model-building iterations, the result is a dramatically improved velocity model. With such a good model as input, the final RTM confirms the geometry of the salt bodies and basically the salt interpretation, and yields a compelling image of the subsurface.


Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. S13-S28 ◽  
Author(s):  
Huub Douma ◽  
Maarten V. de Hoop

We present 3D prestack map time migration in closed form for qP-, qSV-, and mode-converted waves in homogeneous transversely isotropic media with a vertical symmetry axis (VTI). As far as prestack time demigration is concerned, we present closed-form expressions for mapping in homogeneous isotropic media, while for homogeneous VTI media we present a system of four nonlinear equations with four unknowns to solve numerically. The expressions for prestack map time migration in VTI homogeneous media are directly applicable to the problem of anisotropic parameter estimation (i.e., the anellipticity parameter η) in the context of time-migration velocity analysis. In addition, we present closed-form expressions for both prestack map time migration and demigration in the common-offset domain for pure-mode (P-P or S-S) waves in homogeneous isotropic media that use only the slope in the common-offset domain as opposed to slopes in both the common-shot and common-receiver (or equivalently the common-offset and common-midpoint) domains. All time-migration and demigration equations presented can be used in media with mild lateral and vertical velocity variations, provided the velocity is replaced with the local rms velocity. Finally, we discuss the condition for applicability of prestack map depth migration and demigration in heterogeneous anisotropic media that allows the formation of caustics and explain that this condition is satisfied if, given a velocity model and acquisition geometry, one can map-depth-migrate without ambiguity in either the migrated location or the migrated orientation of reflectors in the image.


Sign in / Sign up

Export Citation Format

Share Document