Miniature array analysis of microtremors

Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. KS13-KS23 ◽  
Author(s):  
Ikuo Cho ◽  
Shigeki Senna ◽  
Hiroyuki Fujiwara

We suggest observing microtremors by using a miniature array consisting of vertical-component seismometers that are placed at the center and on the circumference of a circle with a radius of several tens of centimeters, for identifying the phase velocities of Rayleigh waves with wavelengths exceeding several tens or a hundred meters. We present, as tools for the analysis, a set comprised of the analysis methods for the phase velocity and the evaluation method for the analysis limit, which were recently developed by the authors on the basis of a rigorous theory derived by generalizing a spatial autocorrelation method. We conducted miniature-array observations using four or six servo-type seismometers, JU-215 manufactured by Hakusan Corporation, at about 50 observation points throughout a test site and urban areas in Tsukuba City and its surroundings, which have various topographical and geologic environments. The time required from arrival at an observation point to retrieval averaged about 30 min. We could determine the phase velocities of Rayleigh waves with wavelengths of 40 and 100 m at 91% and 51% of all the observation points, respectively. Miniature array analyses can significantly improve the mobility of observation to infer shallow subsurface velocity structures to the depth of several tens of meters.


1982 ◽  
Vol 72 (4) ◽  
pp. 1329-1349
Author(s):  
H. J. Patton

abstract Single-station measurements of Rayleigh-wave phase velocity are obtained for paths between the Nevada Test Site and the Livermore broadband regional stations. Nuclear underground explosions detonated in Yucca Valley were the sources of the Rayleigh waves. The source phase φs required by the single-station method is calculated for an explosion source by assuming a spherically symmetric point source with step-function time dependence. The phase velocities are used to analyze the Rayleigh waves of the Massachusetts Mountain earthquake of 5 August 1971. Measured values of source phase for this earthquake are consistent with the focal mechanism determined from P-wave first-motion data (Fischer et al., 1972). A moment-tensor inversion of the Rayleigh-wave spectra for a 3-km-deep source gives a horizontal, least-compressive stress axis oriented N63°W and a seismic moment of 5.5 × 1022 dyne-cm. The general agreement between the results of the P-wave study of Fischer et al. (1972) and this study supports the measurements of phase velocities and, in turn, the explosion source model used to calculate φs.



Geophysics ◽  
2004 ◽  
Vol 69 (6) ◽  
pp. 1535-1551 ◽  
Author(s):  
Ikuo Cho ◽  
Taku Tada ◽  
Yuzo Shinozaki

We have developed a new method to determine phase velocities from the vertical component of microseisms recorded with an array of seismic sensors spaced around the circumference of a circle. We calculate two different time histories by taking the average of the seismograms with differing sets of weights for the sensor stations. The spectral ratio of these two time histories contains no information on the arrival directions or on the amplitudes of the incoming waves but depends solely on the phase velocities of the arriving modes. Theoretical considerations indicate that the effects of directional aliasing caused by the use of a finite number of sensors in the field implementation of our method are small in most situations except for short wavelengths. The presence of incoherent noise limits the efficacy of our method for long wavelengths. In field tests using arrays of three seismic sensors, we obtained appropriate estimates of phase velocities in the wavelength range from 5r to 30r where r, the array radius, was on the order of a few meters.



Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Yarin Abukrat ◽  
Moshe Reshef

During the last decade, fiber-optic-based distributed acoustic sensing (DAS) has emerged as an affordable, easy-to-deploy, reliable, and non-invasive technique for high-resolution seismic sensing. We show that fiber deployments dedicated to near-surface seismic applications, commonly employed for the detection and localization of voids, can be used effectively with conventional processing techniques. We tested a variety of small-size sources in different geological environments. These sources, operated on and below the surface, were recorded by horizontal and vertical DAS arrays. Results and comparisons to data acquired by vertical-component geophones demonstrate that DAS may be sufficient for acquiring near-surface seismic data. Furthermore, we tried to address the issue of directional sensing by DAS arrays and use it to solve the problem of wave-mode separation. Records acquired by a unique acquisition setup suggest that one can use the nature of DAS systems as uniaxial strainmeters to record separated wave modes. Lastly, we applied two seismic methods on DAS data acquired at a test site: multi-channel analysis of surface waves (MASW) and shallow diffraction imaging. These methods allowed us to determine the feasibility of using DAS systems for imaging shallow subsurface voids. MASW was used to uncover anomalies in S-wave velocity, whereas shallow diffraction imaging was applied to identify the location of the void. Results obtained illustrate that by using these methods we are able to accurately detect the true location of the void.



Author(s):  
Farshad BahooToroody ◽  
Saeed Khalaj ◽  
Leonardo Leoni ◽  
Filippo De Carlo ◽  
Gianpaolo Di Bona ◽  
...  

Geosynthetics are extensively utilized to improve the stability of geotechnical structures and slopes in urban areas. Among all existing geosynthetics, geotextiles are widely used to reinforce unstable slopes due to their capabilities in facilitating reinforcement and drainage. To reduce settlement and increase the bearing capacity and slope stability, the classical use of geotextiles in embankments has been suggested. However, several catastrophic events have been reported, including failures in slopes in the absence of geotextiles. Many researchers have studied the stability of geotextile-reinforced slopes (GRSs) by employing different methods (analytical models, numerical simulation, etc.). The presence of source-to-source uncertainty in the gathered data increases the complexity of evaluating the failure risk in GRSs since the uncertainty varies among them. Consequently, developing a sound methodology is necessary to alleviate the risk complexity. Our study sought to develop an advanced risk-based maintenance (RBM) methodology for prioritizing maintenance operations by addressing fluctuations that accompany event data. For this purpose, a hierarchical Bayesian approach (HBA) was applied to estimate the failure probabilities of GRSs. Using Markov chain Monte Carlo simulations of likelihood function and prior distribution, the HBA can incorporate the aforementioned uncertainties. The proposed method can be exploited by urban designers, asset managers, and policymakers to predict the mean time to failures, thus directly avoiding unnecessary maintenance and safety consequences. To demonstrate the application of the proposed methodology, the performance of nine reinforced slopes was considered. The results indicate that the average failure probability of the system in an hour is 2.8×10−5 during its lifespan, which shows that the proposed evaluation method is more realistic than the traditional methods.



2018 ◽  
Vol 12 (03) ◽  
pp. 1850007 ◽  
Author(s):  
J. P. Narayan ◽  
A. Kumar

The effects of ridge and valley on the characteristics of Rayleigh waves are presented in this paper. The research work carried out has been stimulated by the day by day increase of long-span structures in the hilly areas which are largely affected by the spatial variability in ground motion caused by the high-frequency Rayleigh waves. The Rayleigh wave responses of the considered triangular and elliptical ridge and valley models were computed using a fourth-order accurate staggered-grid viscoelastic P-SV wave finite-difference (FD) program. The simulated results revealed very large amplification of the horizontal component and de-amplification of the vertical component of Rayleigh wave at the top of a triangular ridge and de-amplification of both the components at the base of the triangular valley. The observed amplification of both the components of Rayleigh wave in front of elliptical valley was larger than triangular valley models. A splitting of the Rayleigh wave wavelet was inferred after interaction with ridge and valley. It is concluded that the large-scale topography acts as a natural insulator for the surface waves and the insulating capacity of the valley is more than that of a ridge. This insulation phenomenon is arising due to the reflection, diffraction and splitting of the surface wave while moving across the topography. It is concluded that insulating potential of the topography for the Rayleigh waves largely depends on their shape and shape-ratio.



1964 ◽  
Vol 54 (2) ◽  
pp. 571-610
Author(s):  
George E. Backus

ABSTRACT If the averages of the reciprocal phase velocity c−1 of a given Rayleigh or Love mode over various great circular or great semicircular paths are known, information can be extracted about how c−1 varies with geographical position. Assuming that geometrical optics is applicable, it is shown that if c−1 is isotropic its great circular averages determine only the sum of the values of c−1 at antipodal points and not their difference. The great semicircular averages determine the difference as well. If c−1 is anisotropic through any cause other than the earth's rotation, even great semicircular averages do not determine c−1 completely. Rotation has negligible effect on Love waves, and if it is the only anisotropy present its effect on Rayleigh waves can be measured and removed by comparing the averages of c−1 for the two directions of travel around any great circle not intersecting the poles of rotation. Only great circular and great semicircular paths are considered because every earthquake produces two averages of c−1 over such paths for each seismic station. No other paths permit such rapid accumulation of data when the azimuthal variations of the earthquakes' radiation patterns are unknown. Expansion of the data in generalized spherical harmonics circumvents the fact that the explicit formulas for c−1 in terms of its great circular or great semicircular integrals require differentiation of the data. Formulas are given for calculating the generalized spherical harmonics numerically.



2019 ◽  
Vol 117 (10) ◽  
pp. 1710
Author(s):  
Anand K. Pandey ◽  
Jonti Gogoi ◽  
Prabha Pandey


1994 ◽  
Author(s):  
Robert C. Kemerait ◽  
Douglas Baumgardt ◽  
Suzanne Leonard


Sign in / Sign up

Export Citation Format

Share Document