Multiparameter TTI tomography of P-wave reflection and VSP data

Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. WC51-WC63 ◽  
Author(s):  
Xiaoxiang Wang ◽  
Ilya Tsvankin

Transversely isotropic models with a tilted symmetry axis (TTI media) are widely used in depth imaging of complex geologic structures. Here, we present a modification of a previously developed 2D P-wave tomographic algorithm for estimating heterogeneous TTI velocity fields and apply it to synthetic and field data. The symmetry-direction velocity [Formula: see text], anisotropy parameters [Formula: see text] and [Formula: see text], and symmetry-axis tilt [Formula: see text] are defined on a rectangular grid. To ensure stable reconstruction of the TTI parameters, reflection data are combined with walkaway vertical seismic profiling (VSP) traveltimes in joint tomographic inversion. To improve the convergence of the algorithm, we develop a three-stage model-updating procedure that gradually relaxes the constraints on the spatial variations of the anisotropy parameters, while the symmetry axis is kept orthogonal to the reflectors. Only at the final stage of the inversion are the parameters [Formula: see text], [Formula: see text], and [Formula: see text] updated on the same grid. We also incorporate geologic constraints into tomography by designing regularization terms that penalize parameter variations in the direction parallel to the interfaces. First, we examine the performance of the regularized joint tomography of reflection and VSP data for two sections of the BP TTI model that contain an anticline and a salt dome. All three TTI parameters in the shallow part of both sections (down to 5 km) are well resolved by the proposed model-updating process. Then, the algorithm is applied to a 2D section from 3D ocean-bottom seismic data acquired at Volve field in the North Sea. The inverted TTI model produces well-focused reflectors throughout the section and accurately positions the key horizons, which is confirmed by the available well markers.

Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 232-246 ◽  
Author(s):  
Vladimir Grechka ◽  
Ilya Tsvankin

Just as the transversely isotropic model with a vertical symmetry axis (VTI media) is typical for describing horizontally layered sediments, transverse isotropy with a tilted symmetry axis (TTI) describes dipping TI layers (such as tilted shale beds near salt domes) or crack systems. P-wave kinematic signatures in TTI media are controlled by the velocity [Formula: see text] in the symmetry direction, Thomsen’s anisotropic coefficients ε and δ, and the orientation (tilt ν and azimuth β) of the symmetry axis. Here, we show that all five parameters can be obtained from azimuthally varying P-wave NMO velocities measured for two reflectors with different dips and/or azimuths (one of the reflectors can be horizontal). The shear‐wave velocity [Formula: see text] in the symmetry direction, which has negligible influence on P-wave kinematic signatures, can be found only from the moveout of shear waves. Using the exact NMO equation, we examine the propagation of errors in observed moveout velocities into estimated values of the anisotropic parameters and establish the necessary conditions for a stable inversion procedure. Since the azimuthal variation of the NMO velocity is elliptical, each reflection event provides us with up to three constraints on the model parameters. Generally, the five parameters responsible for P-wave velocity can be obtained from two P-wave NMO ellipses, but the feasibility of the moveout inversion strongly depends on the tilt ν. If the symmetry axis is close to vertical (small ν), the P-wave NMO ellipse is largely governed by the NMO velocity from a horizontal reflector Vnmo(0) and the anellipticity coefficient η. Although for mild tilts the medium parameters cannot be determined separately, the NMO-velocity inversion provides enough information for building TTI models suitable for time processing (NMO, DMO, time migration). If the tilt of the symmetry axis exceeds 30°–40° (e.g., the symmetry axis can be horizontal), it is possible to find all P-wave kinematic parameters and construct the anisotropic model in depth. Another condition required for a stable parameter estimate is that the medium be sufficiently different from elliptical (i.e., ε cannot be close to δ). This limitation, however, can be overcome by including the SV-wave NMO ellipse from a horizontal reflector in the inversion procedure. While most of the analysis is carried out for a single layer, we also extend the inversion algorithm to vertically heterogeneous TTI media above a dipping reflector using the generalized Dix equation. A synthetic example for a strongly anisotropic, stratified TTI medium demonstrates a high accuracy of the inversion (subject to the above limitations).


Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. D69-D77 ◽  
Author(s):  
Xiaoxiang Wang ◽  
Ilya Tsvankin

Transversely isotropic models with a tilted symmetry axis (TTI) play an increasingly important role in seismic imaging, especially near salt bodies and in active tectonic areas. Here, we present a 2D parameter-estimation methodology for TTI media based on combining P-wave normal-moveout (NMO) velocities, zero-offset traveltimes, and reflection time slopes with borehole data that include check-shot traveltimes as well as the reflector depths and dips. For a dipping TTI layer with the symmetry axis confined to the dip plane of the reflector, simultaneous estimation of the symmetry-direction velocity [Formula: see text], the anisotropy parameters [Formula: see text] and [Formula: see text], and the tilt [Formula: see text] of the symmetry axis proves to be ambiguous despite the borehole constraints. If the symmetry axis is orthogonal to the reflector, [Formula: see text] and [Formula: see text] can be recovered with high accuracy, even when the symmetry axis deviates by [Formula: see text] from the reflector normal. The parameter [Formula: see text], however, cannot be constrained for dips smaller than 60° without using nonhyperbolic moveout. To invert for the interval parameters of layered TTI media, we apply 2D stacking-velocity inversion supplemented with the same borehole constraints. The dip planes in all layers are assumed to be aligned, and the symmetry axis is set orthogonal to the reflector in each layer. Information about reflector dips can be replaced with near-offset walkaway vertical seismic profiling (VSP) traveltimes. Tests on noise-contaminated data demonstrate that the algorithm produces stable estimates of the interval parameters [Formula: see text] and [Formula: see text], if the range of dips does not exceed 30°. Our method can be used to build an accurate initial TTI model for post-migration reflection tomography and other techniques that employ migration velocity analysis.


Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 904-910 ◽  
Author(s):  
Vladimir Grechka ◽  
Andres Pech ◽  
Ilya Tsvankin ◽  
Baoniu Han

Transverse isotropy with a tilted symmetry axis (TTI media) has been recognized as a common feature of shale formations in overthrust areas, such as the Canadian Foothills. Since TTI layers cause serious problems in conventional imaging, it is important to be able to reconstruct the velocity model suitable for anisotropic depth migration. Here, we discuss the results of anisotropic parameter estimation on a physical‐modeling data set. The model represents a simplified version of a typical overthrust section from the Alberta Foothills, with a horizontal reflector overlaid by a bending transversely isotropic layer. Assuming that the TTI layer is homogeneous and the symmetry axis stays perpendicular to its boundaries, we invert P-wave normal‐moveout (NMO) velocities and zero‐offset traveltimes for the symmetry‐direction velocity V0 and the anisotropic parameters ε and δ. The coefficient ε is obtained using the traveltimes of a wave that crosses a dipping TTI block and reflects from the bottom of the model. The inversion for ε is based on analytic expressions for NMO velocity in media with intermediate dipping interfaces. Our estimates of both anisotropic coefficients are close to their actual values. The errors in the inversion, which are associated primarily with the uncertainties in picking the NMO velocities and traveltimes, can be reduced by a straighforward modification of the acquisition geometry. It should be emphasized that the moveout inversion also gives an accurate estimate of the thickness of the TTI layer, thus reconstructing the correct depth scale of the section. Although the physical model used here was relatively simple, our results demonstrate the principal feasibility of anisotropic velocity analysis and imaging in overthrust areas. The main problems in anisotropic processing for TTI models are likely to be caused by the lateral variation of the velocity field and overall structural complexity.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. C11-C23 ◽  
Author(s):  
Xiaoxiang Wang ◽  
Ilya Tsvankin

Reflection tomography in the migrated domain can help reconstruct heterogeneous, anisotropic velocity fields needed for accurate depth imaging of complex geologic structures. The presence of anisotropy, however, increases the uncertainty in velocity analysis and typically requires a priori constraints on the model parameters. Here, we develop a 2D P-wave tomographic algorithm for heterogeneous transversely isotropic media with a tilted symmetry axis (TTI) and investigate the conditions necessary for stable estimation of the symmetry-direction velocity [Formula: see text] and the anisotropy parameters [Formula: see text] and [Formula: see text]. The model is divided into rectangular cells, and the parameters [Formula: see text], [Formula: see text], [Formula: see text], and the tilt [Formula: see text] of the symmetry axis are defined at the grid points. To increase the stability of the inversion, the symmetry axis is set orthogonal to the imaged reflectors, with the tilt interpolated inside each layer. The iterative migration velocity analysis involves efficient linearized parameter updating designed to minimize the residual moveout in image gathers for all available reflection events. The moveout equation in the depth-migrated domain includes a nonhyperbolic term that describes long-offset data, which are particularly sensitive to [Formula: see text]. Synthetic tests for models with a “quasi-factorized” TTI syncline (i.e., [Formula: see text] and [Formula: see text] are constant inside the anisotropic layer) and a TTI thrust sheet demonstrate that stable parameter estimation requires either strong smoothness constraints or additional information from walkaway VSP (vertical seismic profiling) traveltimes. If the model is quasi-factorized with a linear spatial variation of [Formula: see text], it may be possible to obtain the interval TTI parameters just from long-spread reflection data.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA23-WA29 ◽  
Author(s):  
Xiaoxiang Wang ◽  
Ilya Tsvankin

Currently TTI (transversely isotropic with a tilted symmetry axis) models are widely used for velocity analysis and imaging in many exploration areas. We develop a 3D parameter-estimation algorithm for TTI media composed of homogeneous layers separated by plane dipping interfaces. The input data include P-wave NMO ellipses and time slopes (horizontal slownesses of the zero-offset rays) combined with borehole information. If the symmetry axis is perpendicular to the bottom of each layer, it is possible to estimate the interval symmetry-direction velocity VP0 , anisotropy parameter [Formula: see text], and the reflector orientation using a single constraint — the reflector depth. The algorithm can tolerate small [Formula: see text] deviation of the symmetry axis from the reflector normal. However, as is the case for the 2D problem, the parameter [Formula: see text] can seldom be obtained without nonhyperbolic moveout inversion. If the symmetry axis deviates from the reflector normal but is confined to the dip plane, stable parameter estimation requires specifying a relationship between the tilt and dip in each layer. When the tilt represents a free parameter, the input data have to be supplemented by wide-azimuth VSP traveltimes with the offset reaching at least 1/4 of the maximum reflector depth. Moreover, the additional angle coverage provided by VSP data may help resolve the parameter [Formula: see text] in the upper part of the model. The developed methodology can be used to build an accurate initial anisotropic velocity model for processing of wide-azimuth surveys.


Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1933-1935 ◽  
Author(s):  
Colin M. Sayers

Sedimentary rocks frequently possess an anisotropic structure resulting, for example, from fine scale layering, the presence of oriented microcracks or fractures, or the preferred orientation of nonspherical grains or anisotropic minerals. For many rocks the anisotropy may be described, to a good approximation, as being transversely isotropic. The purpose of this note is to present simplified anisotropy parameters for these rocks that are valid when the P‐wave normal moveout (NMO) and vertical velocities differ by less than 25%. This condition appears reasonable since depths calculated from P‐wave stacking velocities are often within 10% of actual depths (Winterstein, 1986). It is found that when this condition is satisfied the elastic constants [Formula: see text] and [Formula: see text] affect the P‐wave NMO velocity and anellipticity only through the combination [Formula: see text], a combination of elastic constants that can be determined using walkaway VSP data (Miller et al., 1993). The anellipticity quantifies the deviation of the P‐phase slowness from an ellipse and also determines the difference between the vertical and NMO velocities for SV‐waves. Helbig (1983) has shown that a time‐migrated section for which elliptical anisotropy has been taken into account is identical to one that has been determined under the assumption of isotropy. The anellipticity is therefore the important anisotropy parameter for anisotropic time migration. The results given are of interest for anisotropic velocity analysis, time migration, and time‐to‐depth conversion.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. S139-S150 ◽  
Author(s):  
Vladimir Li ◽  
Ilya Tsvankin ◽  
Tariq Alkhalifah

Extended images obtained from reverse time migration (RTM) contain information about the accuracy of the velocity field and subsurface illumination at different incidence angles. Here, we evaluate the influence of errors in the anisotropy parameters on the shape of the residual moveout (RMO) in P-wave RTM extended images for VTI (transversely isotropic with a vertical symmetry axis) media. Using the actual spatial distribution of the zero-dip NMO velocity ([Formula: see text]), which could be approximately estimated by conventional techniques, we analyze the extended images obtained with distorted fields of the parameters [Formula: see text] and [Formula: see text]. Differential semblance optimization (DSO) and stack-power estimates are employed to study the sensitivity of focusing to the anisotropy parameters. We also build angle gathers to facilitate interpretation of the shape of RMO in the extended images. The results show that the signature of [Formula: see text] is dip-dependent, whereas errors in [Formula: see text] cause defocusing only if that parameter is laterally varying. Hence, earlier results regarding the influence of [Formula: see text] and [Formula: see text] on reflection moveout and migration velocity analysis remain generally valid in the extended image space for complex media. The dependence of RMO on errors in the anisotropy parameters provides essential insights for anisotropic wavefield tomography using extended images.


2012 ◽  
Vol 190 (2) ◽  
pp. 1197-1203 ◽  
Author(s):  
Dariush Nadri ◽  
Joël Sarout ◽  
Andrej Bóna ◽  
David Dewhurst

Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T51-T62 ◽  
Author(s):  
Qi Hao ◽  
Alexey Stovas ◽  
Tariq Alkhalifah

Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.


Geophysics ◽  
2021 ◽  
pp. 1-78
Author(s):  
Da Shuai ◽  
Alexey Stovas ◽  
Jianxin Wei ◽  
Bangrang Di ◽  
Yang Zhao

The linear slip theory is gradually being used to characterize seismic anisotropy. If the transversely isotropic medium embeds vertical fractures (VFTI medium), the effective medium becomes orthorhombic. The vertical fractures, in reality, may exist in any azimuth angle which leads the effective medium to be monoclinic. We apply the linear slip theory to create a monoclinic medium by only introducing three more physical meaning parameters: the fracture preferred azimuth angle, the fracture azimuth angle, and the angular standard deviation. First, we summarize the effective compliance of a rock as the sum of the background matrix compliance and the fracture excess compliance. Then, we apply the Bond transformation to rotate the fractures to be azimuth dependent, introduce a Gaussian function to describe the fractures' azimuth distribution assuming that the fractures are statistically distributed around the preferred azimuth angle, and average each fracture excess compliance over azimuth. The numerical examples investigate the influence of the fracture azimuth distribution domain and angular standard deviation on the effective stiffness coefficients, elastic wave velocities, and anisotropy parameters. Our results show that the fracture cluster parameters have a significant influence on the elastic wave velocities. The fracture azimuth distribution domain and angular standard deviation have a bigger influence on the orthorhombic anisotropy parameters in the ( x2, x3) plane than that in the ( x1, x3) plane. The fracture azimuth distribution domain and angular standard deviation have little influence on the monoclinic anisotropy parameters responsible for the P-wave NMO ellipse and have a significant influence on the monoclinic anisotropy parameters responsible for the S1- and S2-wave NMO ellipse. The effective monoclinic can be degenerated into the VFTI medium.


Sign in / Sign up

Export Citation Format

Share Document