Pseudoacoustic tilted transversely isotropic modeling with optimal k-space operator-based implicit finite-difference schemes

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. T139-T157 ◽  
Author(s):  
Shigang Xu ◽  
Yang Liu

Current temporal high-order finite-difference (FD) stencils are mainly designed for isotropic wave equations, which cannot be directly extended to pseudoacoustic wave equations (PWEs) in tilted transversely isotropic (TTI) media. Moreover, it is difficult to obtain the time-space domain FD coefficients for anisotropic PWEs based on nonlinear dispersion relations in which anisotropy parameters are coupled with FD coefficients. Therefore, a second-order FD for temporal derivatives and a high-order FD for spatial derivatives are commonly used to discretize PWEs in TTI media. To improve the temporal and spatial modeling accuracy further, we have developed several effective FD schemes for modeling PWEs in TTI media. Through combining the [Formula: see text] (wavenumber)-space operators with the conventional implicit FD stencils (i.e., regular-grid [RG], staggered-grid [SG], and rotated SG [RSG]), we establish novel dispersion relations and determine FD coefficients using least-squares (LS). Based on [Formula: see text]-space operator compensation, we adopt the modified LS-based implicit RG-FD, implicit SG-FD, and implicit RSG-FD methods to respectively solve the second- and first-order PWEs in TTI media. Dispersion analyses indicate that the modified implicit FD schemes based on [Formula: see text]-space operator compensation can greatly increase the numerical accuracy at large wavenumbers. Modeling examples in TTI media demonstrate that the proposed FD schemes can adopt a short FD operator to simultaneously achieve high temporal and spatial modeling accuracy, thus significantly improve the computational efficiency compared with the conventional methods.

Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. T225-T235 ◽  
Author(s):  
Leandro Di Bartolo ◽  
Leandro Lopes ◽  
Luis Juracy Rangel Lemos

Pseudoacoustic algorithms are very fast in comparison with full elastic ones for vertical transversely isotropic (VTI) modeling, so they are suitable for many applications, especially reverse time migration. Finite differences using simple grids are commonly used to solve pseudoacoustic equations. We have developed and implemented general high-order 3D pseudoacoustic transversely isotropic formulations. The focus is the development of staggered-grid finite-difference algorithms, known for their superior numerical properties. The staggered-grid schemes based on first-order velocity-stress wave equations are developed in detail as well as schemes based on direct application to second-order stress equations. This last case uses the recently presented equivalent staggered-grid theory, resulting in a staggered-grid scheme that overcomes the problem of large memory requirement. Two examples are presented: a 3D simulation and a prestack reverse time migration application, and we perform a numerical analysis regarding computational cost and precision. The errors of the new schemes are smaller than the existing nonstaggered-grid schemes. In comparison with existing staggered-grid schemes, they require 25% less memory and only have slightly greater computational cost.


2016 ◽  
Vol 24 (04) ◽  
pp. 1650016 ◽  
Author(s):  
Hongyong Yan ◽  
Lei Yang ◽  
Xiang-Yang Li ◽  
Hong Liu

Finite-difference (FD) schemes have been used widely for solving wave equations in seismic exploration. However, the conventional FD schemes hardly guarantee high accuracy at both small and large wavenumbers. In this paper, we propose an optimal time-space domain FD scheme for acoustic vertical transversely isotropic (VTI) wave modeling. The optimal FD coefficients for the second-order spatial derivatives are derived by approaching the time-space domain dispersion relation of acoustic VTI wave equations with the combination of the Taylor-series expansion and the sampling interpolation. We perform numerical dispersion analyses and acoustic VTI modeling using the optimal time-space domain FD scheme. The numerical dispersion analyses show that the optimal FD scheme has smaller dispersion than the conventional FD scheme at large wavenumbers, and also preserves high accuracy at small wavenumbers. The acoustic VTI modeling examples also demonstrate that the optimal time-space domain FD scheme has greater accuracy compared with the conventional time-space domain FD scheme for the same modeling parameters.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. C71-C89 ◽  
Author(s):  
Xinru Mu ◽  
Jianping Huang ◽  
Peng Yong ◽  
Jinqiang Huang ◽  
Xu Guo ◽  
...  

Seismic forward modeling in tilted transverse isotropic (TTI) media is crucial for the application of reverse time migration and full-waveform inversion. Modeling based on conventional coupled pseudoacoustic wave equations not only generates SV-wave artifacts, but it also suffers from instabilities in which the anisotropy parameter [Formula: see text]. To address these issues, we have started with the exact vertical transversely isotropic phase velocity formula and developed novel pure qP- and qSV-wave governing equations in TTI media by using the optimal quadratic approximation. For the convenience of using finite-difference (FD) method to solve the new pure qP- and qSV-wave wave equations, we decompose the equations into a combination of a time-space-domain wave equation that can be solved by the FD method and a Poisson equation that can be solved by the pseudospectral method. We find that the high-frequency errors caused by the pseudospectral method and the usual truncation errors in FD schemes may be responsible for the instability of the numerical simulations. To stabilize the computation, we design a 2D low-pass filtering operator to eliminate severe high-frequency numerical noise. Several numerical examples demonstrate that modeling using the new pure qP-wave equations does not have qSV-wave artifacts interference and is stable for [Formula: see text]. Our results indicate that our method can achieve highly accurate and stable modeling results even in extremely complex TTI media.


Sign in / Sign up

Export Citation Format

Share Document