scholarly journals Simultaneous denoising of multicomponent microseismic data by joint sparse representation with dictionary learning

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. KS155-KS172
Author(s):  
Jie Shao ◽  
Yibo Wang ◽  
Yi Yao ◽  
Shaojiang Wu ◽  
Qingfeng Xue ◽  
...  

Microseismic data usually have a low signal-to-noise ratio, necessitating the application of an effective denoising method. Most conventional denoising methods treat each component of multicomponent data separately, e.g., denoising methods with sparse representation. However, microseismic data are often acquired with a 3C receiver, especially in borehole monitoring cases. Independent denoising ignores the relative amplitudes and vector relationships between different components. We have developed a new simultaneous denoising method for 3C microseismic data based on joint sparse representation. The three components are represented by different dictionary atoms; the dictionary can be fixed or adaptive depending on the dictionary learning method that is used. Our method adds an extra time consistency constraint with simultaneous transformation of 3C data. The joint sparse optimization problem is solved using the extended orthogonal matching pursuit. Synthetic microseismic data with a double-couple source mechanism and two field downhole microseismic data were used for testing. Independent denoising of 1C data with the fixed dictionary method and simultaneous denoising of 3C data with the fixed dictionary and dictionary learning (3C-DL) methods were compared. The results indicate that among the three methods, the 3C-DL method is the most effective in suppressing random noise, preserving weak signals, and restoring polarization information; this is achieved by combining the time consistency constraint and dictionary learning.

Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. KS51-KS61 ◽  
Author(s):  
Hang Wang ◽  
Quan Zhang ◽  
Guoyin Zhang ◽  
Jinwei Fang ◽  
Yangkang Chen

Microseismic monitoring is an indispensable technique in characterizing the physical processes that are caused by extraction or injection of fluids during the hydraulic fracturing process. Microseismic data, however, are often contaminated with strong random noise and have a low signal-to-noise ratio (S/N). The low S/N in most microseismic data severely affects the accuracy and reliability of the source localization and source-mechanism inversion results. We have developed a new denoising framework to enhance the quality of microseismic data. We use the method of adaptive sparse dictionaries to learn the waveform features of the microseismic data by iteratively updating the dictionary atoms and sparse coefficients in an unsupervised way. Unlike most existing dictionary learning applications in the seismic community, we learn the features from 1D microseismic data, thereby to learn 1D features of the waveforms. We develop a sparse dictionary learning framework and then prepare the training patches and implement the algorithm to obtain favorable denoising performance. We use extensive numerical examples and real microseismic data examples to demonstrate the validity of our method. Results show that the features of microseismic waveforms can be learned to distinguish signal patches and noise patches even from a single channel of microseismic data. However, more training data can make the learned features smoother and better at representing useful signal components.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. A45-A51 ◽  
Author(s):  
Chao Zhang ◽  
Mirko van der Baan

The low-magnitude microseismic signals generated by fracture initiation are generally buried in strong background noise, which complicates their interpretation. Thus, noise suppression is a significant step. We have developed an effective multicomponent, multidimensional microseismic-data denoising method by conducting a simplified polarization analysis in the 3D shearlet transform domain. The 3D shearlet transform is very competitive in dealing with multidimensional data because it captures details of signals at different scales and orientations, which benefits signal and noise separation. We have developed a novel processing strategy based on a signal-detection operator that can effectively identify signal coefficients in the shearlet domain by taking the correlation and energy distribution of 3C microseismic signals into account. We perform tests on synthetic and real data sets and determine that the proposed method can effectively remove random noise and preserve weak signals.


Author(s):  
Maryam Abedini ◽  
Horriyeh Haddad ◽  
Marzieh Faridi Masouleh ◽  
Asadollah Shahbahrami

This study proposes an image denoising algorithm based on sparse representation and Principal Component Analysis (PCA). The proposed algorithm includes the following steps. First, the noisy image is divided into overlapped [Formula: see text] blocks. Second, the discrete cosine transform is applied as a dictionary for the sparse representation of the vectors created by the overlapped blocks. To calculate the sparse vector, the orthogonal matching pursuit algorithm is used. Then, the dictionary is updated by means of the PCA algorithm to achieve the sparsest representation of vectors. Since the signal energy, unlike the noise energy, is concentrated on a small dataset by transforming into the PCA domain, the signal and noise can be well distinguished. The proposed algorithm was implemented in a MATLAB environment and its performance was evaluated on some standard grayscale images under different levels of standard deviations of white Gaussian noise by means of peak signal-to-noise ratio, structural similarity indexes, and visual effects. The experimental results demonstrate that the proposed denoising algorithm achieves significant improvement compared to dual-tree complex discrete wavelet transform and K-singular value decomposition image denoising methods. It also obtains competitive results with the block-matching and 3D filtering method, which is the current state-of-the-art for image denoising.


2013 ◽  
Vol 52 (5) ◽  
pp. 057006 ◽  
Author(s):  
Qiheng Zhang ◽  
Yuli Fu ◽  
Haifeng Li ◽  
Jian Zou

2017 ◽  
Vol 39 (12) ◽  
pp. 2554-2560 ◽  
Author(s):  
Bing Li ◽  
Chunfeng Yuan ◽  
Weihua Xiong ◽  
Weiming Hu ◽  
Houwen Peng ◽  
...  

2021 ◽  
Author(s):  
Mahdi Marsousi

The Sparse representation research field and applications have been rapidly growing during the past 15 years. The use of overcomplete dictionaries in sparse representation has gathered extensive attraction. Sparse representation was followed by the concept of adapting dictionaries to the input data (dictionary learning). The K-SVD is a well-known dictionary learning approach and is widely used in different applications. In this thesis, a novel enhancement to the K-SVD algorithm is proposed which creates a learnt dictionary with a specific number of atoms adapted for the input data set. To increase the efficiency of the orthogonal matching pursuit (OMP) method, a new sparse representation method is proposed which applies a multi-stage strategy to reduce computational cost. A new phase included DCT (PI-DCT) dictionary is also proposed which significantly reduces the blocking artifact problem of using the conventional DCT. The accuracy and efficiency of the proposed methods are then compared with recent approaches that demonstrate the promising performance of the methods proposed in this thesis.


2021 ◽  
Vol 11 (22) ◽  
pp. 10943
Author(s):  
Zhili Chen ◽  
Peng Wang ◽  
Zhixian Gui ◽  
Qinghui Mao

Microseismic monitoring is an important technology used to evaluate hydraulic fracturing, and denoising is a crucial processing step. Analyses of the characteristics of acquired three-component microseismic data have indicated that the vertical component has a higher signal-to-noise ratio (SNR) than the two horizontal components. Therefore, we propose a new denoising method for three-component microseismic data using re-constrain variational mode decomposition (VMD). In this method, it is assumed that there is a linear relationship between the modes with the same center frequency among the VMD results of the three-component data. Then, the decomposition result of the vertical component is used as a constraint to the whole denoising effect of the three-component data. On the basis of VMD, we add a constraint condition to form the re-constrain VMD, and deduce the corresponding solution process. According to the synthesis data analysis, the proposed method can not only improve the SNR level of three-component records, it also improves the accuracy of polarization analysis. The proposed method also achieved a satisfactory effect for field data.


Sign in / Sign up

Export Citation Format

Share Document