scholarly journals Three-Component Microseismic Data Denoising Based on Re-Constrain Variational Mode Decomposition

2021 ◽  
Vol 11 (22) ◽  
pp. 10943
Author(s):  
Zhili Chen ◽  
Peng Wang ◽  
Zhixian Gui ◽  
Qinghui Mao

Microseismic monitoring is an important technology used to evaluate hydraulic fracturing, and denoising is a crucial processing step. Analyses of the characteristics of acquired three-component microseismic data have indicated that the vertical component has a higher signal-to-noise ratio (SNR) than the two horizontal components. Therefore, we propose a new denoising method for three-component microseismic data using re-constrain variational mode decomposition (VMD). In this method, it is assumed that there is a linear relationship between the modes with the same center frequency among the VMD results of the three-component data. Then, the decomposition result of the vertical component is used as a constraint to the whole denoising effect of the three-component data. On the basis of VMD, we add a constraint condition to form the re-constrain VMD, and deduce the corresponding solution process. According to the synthesis data analysis, the proposed method can not only improve the SNR level of three-component records, it also improves the accuracy of polarization analysis. The proposed method also achieved a satisfactory effect for field data.

Author(s):  
Dongmei Wang ◽  
Lijuan Zhu ◽  
Jikang Yue ◽  
Jingyi Lu ◽  
Gongfa Li

To eliminate noise interference in pipeline leakage detection, a signal denoising method based on an improved variational mode decomposition algorithm is proposed. This work adopts a standard variational mode decomposition algorithm with decomposition level K and the penalty factor α. The improvements consist of using a two-dimensional sparrow search algorithm to find K and α. To verify the superiority of the sparrow search algorithm to find K and α, it is compared with three earlier studies. These studies used the firefly algorithm, particle swarm optimization, and whale optimization algorithm to perform the optimization. The main result of this study is to demonstrate that the variational mode decomposition improved by sparrow search algorithm gives a much improved signal-to-noise ratio compared to the other methods. In all other respects, the results are comparable.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1567
Author(s):  
Ragavesh Dhandapani ◽  
Imene Mitiche ◽  
Scott McMeekin ◽  
Venkateswara Sarma Mallela ◽  
Gordon Morison

This paper presents a new approach for denoising Partial Discharge (PD) signals using a hybrid algorithm combining the adaptive decomposition technique with Entropy measures and Group-Sparse Total Variation (GSTV). Initially, the Empirical Mode Decomposition (EMD) technique is applied to decompose a noisy sensor data into the Intrinsic Mode Functions (IMFs), Mutual Information (MI) analysis between IMFs is carried out to set the mode length K. Then, the Variational Mode Decomposition (VMD) technique decomposes a noisy sensor data into K number of Band Limited IMFs (BLIMFs). The BLIMFs are separated as noise, noise-dominant, and signal-dominant BLIMFs by calculating the MI between BLIMFs. Eventually, the noise BLIMFs are discarded from further processing, noise-dominant BLIMFs are denoised using GSTV, and the signal BLIMFs are added to reconstruct the output signal. The regularization parameter λ for GSTV is automatically selected based on the values of Dispersion Entropy of the noise-dominant BLIMFs. The effectiveness of the proposed denoising method is evaluated in terms of performance metrics such as Signal-to-Noise Ratio, Root Mean Square Error, and Correlation Coefficient, which are are compared to EMD variants, and the results demonstrated that the proposed approach is able to effectively denoise the synthetic Blocks, Bumps, Doppler, Heavy Sine, PD pulses and real PD signals.


2021 ◽  
pp. 147592172110066
Author(s):  
Bin Pang ◽  
Mojtaba Nazari ◽  
Zhenduo Sun ◽  
Jiaying Li ◽  
Guiji Tang

The fault feature signal of rolling bearing can be characterized as the narrow-band signal with a specific resonance frequency. Therefore, resonance demodulation analysis is a powerful damage detection technique of bearings. In addition to the fault feature signal, the measured vibration signals carry various interference components, and these interference components become a serious obstacle of fault feature extraction. Variational mode extraction is a novel signal analysis method designed to retrieve a specific signal component from the composite signal. Variational mode extraction is founded on a similar basis as variational mode decomposition, while it shows better accuracy and higher efficiency compared with variational mode decomposition. In this study, variational mode extraction is introduced to the resonance demodulation analysis of bearing fault. As the results of variational mode extraction analysis are greatly influenced by the choice of two parameters, that is, the balancing factor α and the initial guess of center frequency ωd, an optimized variational mode extraction method is further developed. First, a new fault information evaluation index for measuring the richness of fault characteristics of the signal, termed ensemble impulsiveness and cyclostationarity, is formulated. Second, the ensemble impulsiveness and cyclostationarity is used as the fitness function of particle swarm optimization to automatically determine the optimal values of α and ωd. Finally, the validity of optimized variational mode extraction method is verified by simulated and experimental analysis, and the superiority of optimized variational mode extraction method is highlighted through comparison with two other advanced resonance demodulation analysis approaches, that is, the improved kurtogram and infogram. The analysis results indicate that optimized variational mode extraction method has a powerful capability of resonance demodulation analysis.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3510 ◽  
Author(s):  
Zhijian Wang ◽  
Junyuan Wang ◽  
Wenhua Du

Variational Mode Decomposition (VMD) can decompose signals into multiple intrinsic mode functions (IMFs). In recent years, VMD has been widely used in fault diagnosis. However, it requires a preset number of decomposition layers K and is sensitive to background noise. Therefore, in order to determine K adaptively, Permutation Entroy Optimization (PEO) is proposed in this paper. This algorithm can adaptively determine the optimal number of decomposition layers K according to the characteristics of the signal to be decomposed. At the same time, in order to solve the sensitivity of VMD to noise, this paper proposes a Modified VMD (MVMD) based on the idea of Noise Aided Data Analysis (NADA). The algorithm first adds the positive and negative white noise to the original signal, and then uses the VMD to decompose it. After repeated cycles, the noise in the original signal will be offset to each other. Then each layer of IMF is integrated with each layer, and the signal is reconstructed according to the results of the integrated mean. MVMD is used for the final decomposition of the reconstructed signal. The algorithm is used to deal with the simulation signals and measured signals of gearbox with multiple fault characteristics. Compared with the decomposition results of EEMD and VMD, it shows that the algorithm can not only improve the signal to noise ratio (SNR) of the signal effectively, but can also extract the multiple fault features of the gear box in the strong noise environment. The effectiveness of this method is verified.


2021 ◽  
Vol 21 (1) ◽  
pp. 19-24
Author(s):  
Xiaolei Wang ◽  
Huiliang Cao ◽  
Yuzhao Jiao ◽  
Taishan Lou ◽  
Guoqiang Ding ◽  
...  

Abstract The noise signal in the gyroscope is divided into four levels: sampling frequency level, device bandwidth frequency level, resonant frequency level, and carrier frequency level. In this paper, the signal in the dual-mass MEMS gyroscope is analyzed. Based on the variational mode decomposition (VMD) algorithm, a novel dual-mass MEMS gyroscope noise reduction method is proposed. The VMD method with different four-level center frequencies is used to process the original output signal of the MEMS gyroscope, and the results are analyzed by the Allan analysis of variance, which shows that the ARW of the gyroscope is increased from 1.998*10−1°/√h to 1.552*10−4°/√h, BS increased from 2.5261°/h to 0.0093°/h.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 597 ◽  
Author(s):  
Guohui Li ◽  
Zhichao Yang ◽  
Hong Yang

Due to the non-linear and non-stationary characteristics of ship radiated noise (SR-N) signal, the traditional linear and frequency-domain denoising methods cannot be used for such signals. In this paper, an SR-N signal denoising method based on modified complete ensemble empirical mode decomposition (EMD) with adaptive noise (CEEMDAN), dispersion entropy (DE), and interval thresholding is proposed. The proposed denoising method has the following advantages: (1) as an improved version of CEEMDAN, modified CEEMDAN (MCEEMDAN) combines the advantages of EMD and CEEMDAN, and it is more reliable than CEEMDAN and has less consuming time; (2) as a fast complexity measurement technology, DE can effectively identify the type of intrinsic mode function (IMF); and (3) interval thresholding is used for SR-N signal denoising, which avoids loss of amplitude information compared with traditional denoising methods. Firstly, the original signal is decomposed into a series of IMFs using MCEEMDAN. According to the DE value of IMF, the modes are divided into three types: noise IMF, noise-dominated IMF and pure IMF. After noise IMFs are removed, the noise-dominated IMFs are denoised using interval thresholding. Finally, the pure IMF and the processed noise-dominated IMFs are reconstructed to obtain the final denoised signal. The denoising experiments with the Chen’s chaotic system show that the proposed method has a higher signal-to-noise ratio (SNR) than the other three methods. Applying the proposed method to denoise the real SR-N signal, the topological structure of chaotic attractor can be recovered clearly. It is proved that the proposed method can effectively suppress the high-frequency noise of SR-N signal.


2019 ◽  
Vol 26 (3-4) ◽  
pp. 229-240
Author(s):  
Jianwei Zhang ◽  
Ge Hou ◽  
Han Wang ◽  
Yu Zhao ◽  
Jinlin Huang

Operation feature extraction of flood discharge structures under ambient excitation has attracted increasing attention in recent years. However, the vibration signal of flood discharge structures is a nonstationary random signal with low signal-to-noise ratio, which is mixed with lots of low-frequency water flow noise and high-frequency white noise. It is difficult to excavate the hidden vibration characteristic information accurately. To solve the problem, we propose a novel denoising method called improved variational mode decomposition. As an improved method of variational mode decomposition, improved variational mode decomposition can effectively determine the decomposition mode number of variational mode decomposition by using the mutual information method. Furthermore, improved variational mode decomposition is combined with a variance dedication rate to extract the overall operation characteristic information of the structure. In order to evaluate the applicability and effectiveness of the proposed improved variational mode decomposition–variance dedication rate method, we compare the denoising results of simulation signals produced by an improved variational mode decomposition–variance dedication rate with those produced by digital filter, wavelet threshold, empirical mode decomposition, empirical wavelet transform, complete ensemble empirical mode decomposition with adaptive noise, and improved variational mode decomposition methods and find a better performance of the improved variational mode decomposition–variance dedication rate method. In addition, the proposed method is applied to the Three Gorges Dam, and the results show that the improved variational mode decomposition–variance dedication rate method can effectively remove heavy background noises and extract the operation characteristic information of the flood discharge structure, which contributes to health monitoring and damage identification of the flood discharge structure.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 359 ◽  
Author(s):  
Yuxing Li ◽  
Xiao Chen ◽  
Jing Yu ◽  
Xiaohui Yang ◽  
Huijun Yang

The data-driven method is an important tool in the field of underwater acoustic signal processing. In order to realize the feature extraction of ship-radiated noise (S-RN), we proposed a data-driven optimization method called improved variational mode decomposition (IVMD). IVMD, as an improved method of variational mode decomposition (VMD), solved the problem of choosing decomposition layers for VMD by using a frequency-aided method. Furthermore, a novel method of feature extraction for S-RN, which combines IVMD and sample entropy (SE), is put forward in this paper. In this study, four types of S-RN signals are decomposed into a group of intrinsic mode functions (IMFs) by IVMD. Then, SEs of all IMFs are calculated. SEs are different in the maximum energy IMFs (EIMFs), thus, SE of the EIMF is seen as a novel feature for S-RN. To verify the effectiveness of the proposed method, a comparison has been conducted by comparing features of center frequency and SE of the EIMF by IVMD, empirical mode decomposition (EMD) and ensemble EMD (EEMD). The analysis results show that the feature of S-RN can be obtain efficiently and accurately by using the proposed method.


2019 ◽  
Vol 9 (1) ◽  
pp. 180 ◽  
Author(s):  
Weifang Zhang ◽  
Meng Zhang ◽  
Yan Zhao ◽  
Bo Jin ◽  
Wei Dai

Damage detection using an FBG sensor is a critical process for an assessment of any inspection technology classified as structural health monitoring (SHM). FBG signals containing noise in experiments are developed to detect flaws. In this paper, we propose a novel signal denoising method that combines variational mode decomposition (VMD) and changed thresholding wavelets to denoise experimental and mixed signals. VMD is a recently introduced adaptive signal decomposition algorithm. Compared with traditional empirical mode decomposition (EMD), and it is well founded theoretically and more robust to noise samples. First, input signals were broken down into a given number of K band-limited intrinsic mode functions (BLIMFs) by VMD. For the purpose of avoiding the impact of overbinning or underbinning on VMD denoising, the mixed signals, which were obtained by adding different signal/noise ratio (SNR) noises to the experimental signals, were designed to select the best decomposition number K and data-fidelity constraint parameter α. After that, the realistic experimental signals were processed using four denoising algorithms to evaluate denoising performance. The results show that, upon adding additional noisy signals and realistic signals, the proposed algorithm delivers excellent performance over the EMD-based denoising method and discrete wavelet transform filtering.


Sign in / Sign up

Export Citation Format

Share Document