scholarly journals Free-surface and internal multiple elimination in one step without adaptive subtraction

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. A7-A11 ◽  
Author(s):  
Lele Zhang ◽  
Evert Slob

We have derived a scheme for retrieving the primary reflections from the acoustic surface-reflection response by eliminating the free-surface and internal multiple reflections in one step. This scheme does not require model information and adaptive subtraction. It consists only of the reflection response as a correlation and convolution operator that acts on an intermediate wavefield from which we compute and capture the primary reflections. For each time instant, we keep one value for each source-receiver pair and store it in the new data set. The resulting data set contains only primary reflections, and from this data set, a better velocity model can be built than from the original data set. A conventional migration scheme can then be used to compute an artifact-free image of the medium. We evaluated the success of the method with a 2D numerical example. The method can have a wide range of applications in 3D strongly scattering media that are accessible from one side only.

Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. Q27-Q36 ◽  
Author(s):  
Lele Zhang ◽  
Jan Thorbecke ◽  
Kees Wapenaar ◽  
Evert Slob

We have developed a scheme that retrieves primary reflections in the two-way traveltime domain by filtering the data. The data have their own filter that removes internal multiple reflections, whereas the amplitudes of the retrieved primary reflections are compensated for two-way transmission losses. Application of the filter does not require any model information. It consists of convolutions and correlations of the data with itself. A truncation in the time domain is applied after each convolution or correlation. The retrieved data set can be used as the input to construct a better velocity model than the one that would be obtained by working directly with the original data and to construct an enhanced subsurface image. Two 2D numerical examples indicate the effectiveness of the method. We have studied bandwidth limitations by analyzing the effects of a thin layer. The presence of refracted and scattered waves is a known limitation of the method, and we studied it as well. Our analysis indicates that a thin layer is treated as a more complicated reflector, and internal multiple reflections related to the thin layer are properly removed. We found that the presence of refracted and scattered waves generates artifacts in the retrieved data.


Author(s):  
Anne M. Fullerton ◽  
Thomas C. Fu ◽  
Edward S. Ammeen

Impact loads from waves on vessels and coastal structures are highly complex and may involve wave breaking, making these changes difficult to estimate numerically or empirically. Results from previous experiments have shown a wide range of forces and pressures measured from breaking and non-breaking waves, with no clear trend between wave characteristics and the localized forces and pressures that they generate. In 2008, a canonical breaking wave impact data set was obtained at the Naval Surface Warfare Center, Carderock Division, by measuring the distribution of impact pressures of incident non-breaking and breaking waves on one face of a cube. The effects of wave height, wavelength, face orientation, face angle, and submergence depth were investigated. A limited number of runs were made at low forward speeds, ranging from about 0.5 to 2 knots (0.26 to 1.03 m/s). The measurement cube was outfitted with a removable instrumented plate measuring 1 ft2 (0.09 m2), and the wave heights tested ranged from 8–14 inches (20.3 to 35.6 cm). The instrumented plate had 9 slam panels of varying sizes made from polyvinyl chloride (PVC) and 11 pressure gages; this data was collected at 5 kHz to capture the dynamic response of the gages and panels and fully resolve the shapes of the impacts. A Kistler gage was used to measure the total force averaged over the cube face. A bottom mounted acoustic Doppler current profiler (ADCP) was used to obtain measurements of velocity through the water column to provide incoming velocity boundary conditions. A Light Detecting and Ranging (LiDAR) system was also used above the basin to obtain a surface mapping of the free surface over a distance of approximately 15 feet (4.6 m). Additional point measurements of the free surface were made using acoustic distance sensors. Standard and high-speed video cameras were used to capture a qualitative assessment of the impacts. Impact loads on the plate tend to increase with wave height, as well as with plate inclination toward incoming waves. Further trends of the pressures and forces with wave characteristics, cube orientation, draft and face angle are investigated and presented in this paper, and are also compared with previous test results.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. Q15-Q26 ◽  
Author(s):  
Giovanni Angelo Meles ◽  
Kees Wapenaar ◽  
Andrew Curtis

State-of-the-art methods to image the earth’s subsurface using active-source seismic reflection data involve reverse time migration. This and other standard seismic processing methods such as velocity analysis provide best results only when all waves in the data set are primaries (waves reflected only once). A variety of methods are therefore deployed as processing to predict and remove multiples (waves reflected several times); however, accurate removal of those predicted multiples from the recorded data using adaptive subtraction techniques proves challenging, even in cases in which they can be predicted with reasonable accuracy. We present a new, alternative strategy to construct a parallel data set consisting only of primaries, which is calculated directly from recorded data. This obviates the need for multiple prediction and removal methods. Primaries are constructed by using convolutional interferometry to combine the first-arriving events of upgoing and direct-wave downgoing Green’s functions to virtual receivers in the subsurface. The required upgoing wavefields to virtual receivers are constructed by Marchenko redatuming. Crucially, this is possible without detailed models of the earth’s subsurface reflectivity structure: Similar to the most migration techniques, the method only requires surface reflection data and estimates of direct (nonreflected) arrivals between the virtual subsurface sources and the acquisition surface. We evaluate the method on a stratified synclinal model. It is shown to be particularly robust against errors in the reference velocity model used and to improve the migrated images substantially.


Geophysics ◽  
2005 ◽  
Vol 70 (1) ◽  
pp. S1-S17 ◽  
Author(s):  
Alison E. Malcolm ◽  
Maarten V. de Hoop ◽  
Jérôme H. Le Rousseau

Reflection seismic data continuation is the computation of data at source and receiver locations that differ from those in the original data, using whatever data are available. We develop a general theory of data continuation in the presence of caustics and illustrate it with three examples: dip moveout (DMO), azimuth moveout (AMO), and offset continuation. This theory does not require knowledge of the reflector positions. We construct the output data set from the input through the composition of three operators: an imaging operator, a modeling operator, and a restriction operator. This results in a single operator that maps directly from the input data to the desired output data. We use the calculus of Fourier integral operators to develop this theory in the presence of caustics. For both DMO and AMO, we compute impulse responses in a constant-velocity model and in a more complicated model in which caustics arise. This analysis reveals errors that can be introduced by assuming, for example, a model with a constant vertical velocity gradient when the true model is laterally heterogeneous. Data continuation uses as input a subset (common offset, common angle) of the available data, which may introduce artifacts in the continued data. One could suppress these artifacts by stacking over a neighborhood of input data (using a small range of offsets or angles, for example). We test data continuation on synthetic data from a model known to generate imaging artifacts. We show that stacking over input scattering angles suppresses artifacts in the continued data.


2018 ◽  
Vol 44 (2) ◽  
pp. 144-179
Author(s):  
Eric Parsons ◽  
Cory Koedel ◽  
Li Tan

We study the relative performance of two policy-relevant value-added models—a one-step fixed effect model and a two-step aggregated residuals model—using a simulated data set well grounded in the value-added literature. A key feature of our data generating process is that student achievement depends on a continuous measure of economic disadvantage. This is a realistic condition that has implications for model performance because researchers typically have access to only a noisy, binary measure of disadvantage. We find that one- and two-step value-added models perform similarly across a wide range of student and teacher sorting conditions, with the two-step model modestly outperforming the one-step model in conditions that best match observed sorting in real data. A reason for the generally superior performance of the two-step model is that it better handles the use of an error-prone, dichotomous proxy for student disadvantage.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. Q41-Q52 ◽  
Author(s):  
Boris Boullenger ◽  
Deyan Draganov

The theory of seismic interferometry predicts that crosscorrelations of recorded seismic responses at two receivers yield an estimate of the interreceiver seismic response. The interferometric process applied to surface-reflection data involves the summation, over sources, of crosscorrelated traces, and it allows retrieval of an estimate of the interreceiver reflection response. In particular, the crosscorrelations of the data with surface-related multiples in the data produce the retrieval of pseudophysical reflections (virtual events with the same kinematics as physical reflections in the original data). Thus, retrieved pseudophysical reflections can provide feedback information about the surface multiples. From this perspective, we have developed a data-driven interferometric method to detect and predict the arrival times of surface-related multiples in recorded reflection data using the retrieval of virtual data as diagnosis. The identification of the surface multiples is based on the estimation of source positions in the stationary-phase regions of the retrieved pseudophysical reflections, thus not necessarily requiring sources and receivers on the same grid. We have evaluated the method of interferometric identification with a two-layer acoustic example and tested it on a more complex synthetic data set. The results determined that we are able to identify the prominent surface multiples in a large range of the reflection data. Although missing near offsets proved to cause major problems in multiple-prediction schemes based on convolutions and inversions, missing near offsets does not impede our method from identifying surface multiples. Such interferometric diagnosis could be used to control the effectiveness of conventional multiple-removal schemes, such as adaptive subtraction of multiples predicted by convolution of the data.


Geophysics ◽  
1976 ◽  
Vol 41 (4) ◽  
pp. 592-620 ◽  
Author(s):  
Don C. Riley ◽  
Jon F. Claerbout

Starting with a 1-D subsurface model, a method is developed for modeling and inverting the class of multiple reflections involving the near‐perfect reflector at the free surface. A solution to the practical problem of estimating the source waveform is discussed, and application of the 1-D algorithm to field data illustrates the successful elimination of seafloor and peg‐leg multiples. Extending the analysis to waves in two dimensions, we make the approximation that the subsurface behaves as an acoustic medium. Based on several numerical and theoretical considerations, the scalar wave equation is split into two separate partial differential equations: one governing propagation of upcoming waves and a second describing downgoing waves. The result is a pair of propagation equations which are coupled where reflectors exist. Finite difference approximations to the initial boundary value problem are developed to integrate numerically the surface reflection seismogram. Use of the 2‐D algorithm for modeling free‐surface multiple reflections is illustrated by several reflector models. The 2-D inverse problem of simultaneously migrating primary reflections and inverting diffracted multiples consists of reversing the forward calculation with the data as boundary conditions. Causal directions of propagation are related to downward continuation of surface data. Reflector mapping principles are used to develop a general reflection coefficient estimator. The inverse algorithm is illustrated using the results of the 2-D forward calculation as the boundary conditions.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. S263-S270 ◽  
Author(s):  
Yibo Wang ◽  
Yikang Zheng ◽  
Lele Zhang ◽  
Xu Chang ◽  
Zhenxing Yao

Free-surface-related multiples are usually regarded as noise in conventional seismic processing. However, they can provide extra illumination of the subsurface and thus have been used in migration procedures, e.g., in one- and two-way wave-equation migrations. The disadvantage of the migration of multiples is the migration artifacts generated by the crosscorrelation of different seismic events, e.g., primaries and second-order free-surface-related multiples, so the effective elimination of migration artifacts is crucial for migration of multiples. The angle domain common image gather (ADCIG) is a suitable domain for testing the correctness of a migration velocity model. When the migration velocity model is correct, all the events in ADCIGs should be flat, and this provides a criterion for removing the migration artifacts. Our approach first obtains ADCIGs during reverse time migration and then applies a high-resolution parabolic Radon transform to all ADCIGs. By doing so, most migration artifacts will reside in the nonzero curvature regions in the Radon domain, and then a muting procedure can be implemented to remove the data components outside the vicinity of zero curvature. After the application of an adjoint Radon transform, the filtered ADCIGs are obtained and the final denoised migration result is generated by stacking all filtered ADCIGs. A three-flat-layer velocity model and the Marmousi synthetic data set are used for numerical experiments. The numerical results revealed that the proposed approach can eliminate most artifacts generated by migration of multiples when the migration velocity model is correct.


Geophysics ◽  
2005 ◽  
Vol 70 (6) ◽  
pp. S111-S120
Author(s):  
Fabio Rocca ◽  
Massimiliano Vassallo ◽  
Giancarlo Bernasconi

Seismic depth migration back-propagates seismic data in the correct depth position using information about the velocity of the medium. Usually, Kirchhoff summation is the preferred migration procedure for seismic-while-drilling (SWD) data because it can handle virtually any configuration of sources and receivers and one can compensate for irregular spatial sampling of the array elements (receivers and sources). Under the assumption of a depth-varying velocity model, with receivers arranged along a horizontal circumference and sources placed along the central vertical axis, we reformulate the Kirchhoff summation in the angular frequency domain. In this way, the migration procedure becomes very efficient because the migrated volume is obtained by an inverse Fourier transform of the weighted data. The algorithm is suitable for 3D SWD acquisitions when the aforementioned hypothesis holds. We show migration tests on SWD synthetic data, and we derive solutions to reduce the migration artifacts and to control aliasing. The procedure is also applied on a real 3D SWD data set. The result compares satisfactorily with the seismic stack section obtained from surface reflection data and with the results from traditional Kirchhoff migration.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. S171-S185 ◽  
Author(s):  
Chuang Li ◽  
Jianping Huang ◽  
Zhenchun Li ◽  
Han Yu ◽  
Rongrong Wang

Least-squares migration (LSM) of seismic data is supposed to produce images of subsurface structures with better quality than standard migration if we have an accurate migration velocity model. However, LSM suffers from data mismatch problems and migration artifacts when noise pollutes the recorded profiles. This study has developed a reweighted least-squares reverse time migration (RWLSRTM) method to overcome the problems caused by such noise. We first verify that spiky noise and free-surface multiples lead to the mismatch problems and should be eliminated from the data residual. The primary- and multiple-guided weighting matrices are then derived for RWLSRTM to reduce the noise in the data residual. The weighting matrices impose constraints on the data residual such that spiky noise and free-surface multiple reflections are reduced whereas primary reflections are preserved. The weights for spiky noise and multiple reflections are controlled by a dynamic threshold parameter decreasing with iterations for better results. Finally, we use an iteratively reweighted least-squares algorithm to minimize the weighted data residual. We conduct numerical tests using the synthetic data and compared the results of this method with the results of standard LSRTM. The results suggest that RWLSRTM is more robust than standard LSRTM when the seismic data contain spiky noise and multiple reflections. Moreover, our method not only suppresses the migration artifacts, but it also accelerates the convergence.


Sign in / Sign up

Export Citation Format

Share Document