scholarly journals 3D elastic full-waveform inversion using P-wave excitation amplitude: Application to ocean bottom cable field data

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R129-R140 ◽  
Author(s):  
Ju-Won Oh ◽  
Mahesh Kalita ◽  
Tariq Alkhalifah

We have developed an efficient elastic full-waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the crosscorrelation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave ExA automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multiparameter FWI compared with the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from the North Sea.

Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. R109-R119 ◽  
Author(s):  
Timothy J. Sears ◽  
Penny J. Barton ◽  
Satish C. Singh

Elastic full waveform inversion of multichannel seismic data represents a data-driven form of analysis leading to direct quantification of the subsurface elastic parameters in the depth domain. Previous studies have focused on marine streamer data using acoustic or elastic inversion schemes for the inversion of P-wave data. In this paper, P- and S-wave velocities are inverted for using wide-angle multicomponent ocean-bottom cable (OBC) seismic data. Inversion is undertaken using a two-dimensional elastic algorithm operating in the time domain, which allows accurate modeling and inversion of the full elastic wavefield, including P- and mode-converted PS-waves and their respective amplitude variation with offset (AVO) responses. Results are presented from the application of this technique to an OBC seismic data set from the Alba Field, North Sea. After building an initial velocity model and extracting a seismic wavelet, the data are inverted instages. In the first stage, the intermediate wavelength P-wave velocity structure is recovered from the wide-angle data and then the short-scale detail from near-offset data using P-wave data on the [Formula: see text] (vertical geophone) component. In the second stage, intermediate wavelengths of S-wave velocity are inverted for, which exploits the information captured in the P-wave’s elastic AVO response. In the third stage, the earlier models are built on to invert mode-converted PS-wave events on the [Formula: see text] (horizontal geophone) component for S-wave velocity, targeting first shallow and then deeper structure. Inversion of [Formula: see text] alone has been able to delineate the Alba Field in P- and S-wave velocity, with the main field and outlier sands visible on the 2D results. Inversion of PS-wave data has demonstrated the potential of using converted waves to resolve shorter wavelength detail. Even at the low frequencies [Formula: see text] inverted here, improved spatial resolution was obtained by inverting S-wave data compared with P-wave data inversion results.


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B335-B351 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen

Viscoelastic full-waveform inversion is applied to walk-away vertical seismic profile data acquired at a producing heavy-oil field in Western Canada for the determination of subsurface velocity models (P-wave velocity [Formula: see text] and S-wave velocity [Formula: see text]) and attenuation models (P-wave quality factor [Formula: see text] and S-wave quality factor [Formula: see text]). To mitigate strong velocity-attenuation trade-offs, a two-stage approach is adopted. In Stage I, [Formula: see text] and [Formula: see text] models are first inverted using a standard waveform-difference (WD) misfit function. Following this, in Stage II, different amplitude-based misfit functions are used to estimate the [Formula: see text] and [Formula: see text] models. Compared to the traditional WD misfit function, the amplitude-based misfit functions exhibit stronger sensitivity to attenuation anomalies and appear to be able to invert [Formula: see text] and [Formula: see text] models more reliably in the presence of velocity errors. Overall, the root-mean-square amplitude-ratio and spectral amplitude-ratio misfit functions outperform other misfit function choices. In the final outputs of our inversion, significant drops in the [Formula: see text] to [Formula: see text] ratio (~1.6) and Poisson’s ratio (~0.23) are apparent within the Clearwater Formation (depth ~0.45–0.50 km) of the Mannville Group in the Western Canada Sedimentary Basin. Strong [Formula: see text] (~20) and [Formula: see text] (~15) anomalies are also evident in this zone. These observations provide information to help identify the target attenuative reservoir saturated with heavy-oil resources.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B311-B324 ◽  
Author(s):  
Laura Gassner ◽  
Tobias Gerach ◽  
Thomas Hertweck ◽  
Thomas Bohlen

Evidence for gas-hydrate occurrence in the Western Black Sea is found from seismic measurements revealing bottom-simulating reflectors (BSRs) of varying distinctness. From an ocean-bottom seismic data set, low-resolution traveltime-tomography models of P-wave velocity [Formula: see text] are constructed. They serve as input for acoustic full-waveform inversion (FWI), which we apply to derive high-resolution parameter models aiding the interpretation of the seismic data for potential hydrate and gas deposits. Synthetic tests indicate the applicability of the FWI approach to robustly reconstruct [Formula: see text] models with a typical hydrate and gas signature. Models of S-wave velocity [Formula: see text] containing a hydrate signature can only be reconstructed when the parameter distribution of [Formula: see text] is already well-known. When we add noise to the modeled data to simulate field-data conditions, it prevents the reconstruction of [Formula: see text] completely, justifying the application of an acoustic approach. We invert for [Formula: see text] models from field data of two parallel profiles of 14 km length with a distance of 1 km. Results indicate a characteristic velocity trend for hydrate and gas occurrence at BSR depth in the first of the analyzed profiles. We find no indications for gas accumulations below the BSR on the second profile and only weak indications for hydrate. These differences in the [Formula: see text] signature are consistent with the reflectivity behavior of the migrated seismic streamer data of both profiles in which a zone of high-reflectivity amplitudes is coincident with the potential gas zone derived from the FWI result. Calculating saturation estimates for the potential hydrate and gas zones yields values of up to 30% and 1.2%, respectively.


Geophysics ◽  
2020 ◽  
pp. 1-87
Author(s):  
Ju-Won Oh ◽  
Jiubing Cheng ◽  
Dong-Joo Min

Seismic full-waveform inversion (FWI) estimates the subsurface velocity structures by reducing data misfit between observed and modeled data. Simultaneous matching of transmitted and reflected waves in seismic FWI causes different updates of different wavenumber components of a given model depending on the diffraction angle between incident and diffracted rays. Motivated by the inverse scattering imaging condition and elastic full-waveform inversion, we propose applying a diffraction-angle filtering technique in acoustic FWI, which enables us to separate transmission and reflection energy in the partial derivative wavefields. The diffraction-angle filtering is applied to the virtual source, which is the model parameter perturbation acting as a source for the partial derivative wavefields. The diffraction-angle filtering consists of two diffraction-angle filters (DAF), DAF-I and DAF-II. DAF-I, which is derived from the particle acceleration of the incidence wavefields, suppresses energies at either small or large diffraction angles by simply changing the sign of the weighting factor. DAF-I is exactly identical to the conventional inverse scattering approach. DAF-II, which is derived from the artificial shear strain of the incident P-wave, additionally suppresses energies at intermediate diffraction angles. With this mechanism, we can design various types of diffraction-angle filtering to control the updates of wavenumber components of the misfit gradient with respect to the P-wave velocity. For the synthetic Marmousi-II data and real ocean-bottom seismic data from the North Sea, we demonstrate that the diffraction-angle filtering enables us to control low-, intermediate- and high-wavenumber components of the gradient direction.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R113-R133 ◽  
Author(s):  
Yingming Qu ◽  
Zhe Guan ◽  
Jinli Li ◽  
Zhenchun Li

Marine seismic exploration with ocean-bottom cable technology is able to record P- and S-wave information simultaneously. Elastic full-waveform inversion (EFWI) uses P- and S-waves to invert multiple parameters with adequate amplitude information and complete illumination of the subsurface. To calculate the wavefield within EFWI, we use different formats of wave equations in fluid and solid mediums and an appropriate boundary condition to convert waves on the interface. This partitioned simulation scheme is more stable and efficient than the traditional integrated simulation scheme. However, if the fluid-solid coupled medium has an extremely irregular interface, the conventional finite-difference method with rectangular grids cannot obtain accurate source and receiver wavefields. We use the curvilinear coordinates to overcome this limitation. In the curvilinear coordinates, the irregular interface can be transformed into a horizontal interface. To reduce the crosstalk of inverted P- ([Formula: see text]) and S-velocities ([Formula: see text]), we derive the gradient formulas of [Formula: see text] and [Formula: see text] based on P- and S-wave mode separation in the curvilinear coordinates, and, finally, we develop a 2D curvilinear-grid-based fluid-solid separated-wavefield EFWI (CFS-SEFWI) method. Numerical examples that include an anomaly model and a modified Marmousi II model demonstrate that CFS-SEFWI overcomes the influence of the irregular fluid-solid interface and efficiently reduces crosstalk effects between [Formula: see text] and [Formula: see text]. Our results also demonstrate that this method is less sensitive to noise compared to the conventional CFS FWI method without separating wave modes.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. R299-R308 ◽  
Author(s):  
Antoine Guitton ◽  
Tariq Alkhalifah

Choosing the right parameterization to describe a transversely isotropic medium with a vertical symmetry axis (VTI) allows us to match the scattering potential of these parameters to the available data in a way that avoids a potential tradeoff and focuses on the parameters to which the data are sensitive. For 2D elastic full-waveform inversion in VTI media of pressure components and for data with a reasonable range of offsets (as with those found in conventional streamer data acquisition systems), assuming that we have a kinematically accurate normal moveout velocity ([Formula: see text]) and anellipticity parameter [Formula: see text] (or horizontal velocity [Formula: see text]) obtained from tomographic methods, a parameterization in terms of horizontal velocity [Formula: see text], [Formula: see text], and [Formula: see text] is preferred to the more conventional parameterization in terms of [Formula: see text], [Formula: see text], and [Formula: see text]. In the [Formula: see text], [Formula: see text], and [Formula: see text] parameterization and for reasonable scattering angles (<[Formula: see text]), [Formula: see text] acts as a “garbage collector” and absorbs most of the amplitude discrepancies between the modeled and observed data, more so when density [Formula: see text] and S-wave velocity [Formula: see text] are not inverted for (a standard practice with streamer data). On the contrary, in the [Formula: see text], [Formula: see text], and [Formula: see text] parameterization, [Formula: see text] is mostly sensitive to large scattering angles, leaving [Formula: see text] exposed to strong leakages from [Formula: see text] mainly. These assertions will be demonstrated on the synthetic Marmousi II as well as a North Sea ocean bottom cable data set, in which inverting for the horizontal velocity rather than the vertical velocity yields more accurate models and migrated images.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R185-R206 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen ◽  
Yu Geng ◽  
Junxiao Li

Simultaneous determination of multiple physical parameters using full-waveform inversion (FWI) suffers from interparameter trade-off difficulties. Analyzing the interparameter trade-offs in different model parameterizations of isotropic-elastic FWI, and thus determining the appropriate model parameterization, are critical for efficient inversion and obtaining reliable inverted models. Five different model parameterizations are considered and compared including velocity-density, modulus-density, impedance-density, and two velocity-impedance parameterizations. The scattering radiation patterns are first used for interparameter trade-off analysis. Furthermore, a new framework is developed to evaluate the interparameter trade-off based upon multiparameter Hessian-vector products: Multiparameter point spread functions (MPSFs) and interparameter contamination sensitivity kernels (ICSKs), which provide quantitative, second-order measurements of the interparameter contaminations. In the numerical experiments, the interparameter trade-offs in various model parameterizations are evaluated using the MPSFs and ICSKs. Inversion experiments are carried out with simple Gaussian-anomaly models and a complex Marmousi model. Overall, the parameterization of the P-wave velocity, S-wave velocity, and density, and the parameterization of the P-wave velocity, S-wave velocity, and S-wave impedance perform best for reconstructing all of the physical parameters. Isotropic-elastic FWI of the Hussar low-frequency data set with various model parameterizations verifies our conclusions.


2020 ◽  
Vol 222 (2) ◽  
pp. 1236-1244
Author(s):  
L Gassner ◽  
N Thiel ◽  
A Rietbrock

SUMMARY Subduction zones are the places on the Earth where the greatest earthquakes occur. It is now widely accepted that seismic asperities at the interface of subducting plates play a major role in whether a region of a subduction zone behaves seismically, creating strong earthquakes or exhibits aseismic slip. In the last decades, huge advances have been made to decipher the underlying processes; however, the physical parameters along the subduction zone interfaces are still not very well known due to a sparsity of high-resolution experiments and significant costs associated with amphibious seismic experiments. Therefore, synthetic tests are needed to investigate the potential of currently possible high density seismic deployments and to aid future experiment design. As standard local earthquake traveltime tomography in a subduction zone setting cannot resolve structures on a kilometre scale at depth, we explore the suitability of full-waveform inversion (FWI) to increase resolution by using amplitude and phase information in the recorded earthquake seismograms. We apply 2-D-elastic FWI to synthetic earthquake data, using vertical and horizontal receivers, and utilize a realistic model of the seismic velocities at the Ecuadorian margin. We add perturbations within the subducting plates of 4×4 km and 2×2 km in P- and S-wave velocities, respectively, such that potential crosstalk between the two models can be identified. Our results show that the location and amplitude of the perturbations can be reconstructed in high quality down to approximately 70 km depth. We find that the inversion of the S-wave velocity prior to the inversion of the P-wave velocity is necessary to guarantee a good reconstruction of both models; however, the spatial resolution of the S-wave model is superior to the P-wave model. We also show that frequencies up to 1 Hz are sufficient to achieve high resolution. Further tests demonstrate how results depend on the accuracy of the estimated source orientation. Resulting models do not suffer in quality as artefacts near the source positions compensate for the inaccuracy of source orientation. If sources are located within the subducted plate instead of beneath, resulting models are comparable and the convergence of the inversion scheme is sped up. The accuracy of the source position within the model compared to the true earthquake location is critical and implies that earthquake relocation during the inversion process is necessary, in a similar way as in local earthquake traveltime tomography.


Sign in / Sign up

Export Citation Format

Share Document