scholarly journals Deep Learning a Poro-Elastic Rock Physics Model for Pressure and Saturation Discrimination

Geophysics ◽  
2020 ◽  
pp. 1-55
Author(s):  
Wolfgang Weinzierl ◽  
Bernd Wiese

Determining saturation and pore pressure is relevant for hydrocarbon production as well as natural gas and CO2 storage. In this context seismic methods provide spatially distributed data used to determine gas and fluid migration. A method is developed that allows to determine saturation and reservoir pressure from seismic data, more precisely from rock physical attributes that are velocity, attenuation and density. Two rock physical models based on Hertz-Mindlin-Gassmann and Biot-Gassmann are developed. Both generate poroelastic attributes from pore pressure, gas saturation and other rock-physical parameters. The rock physical models are inverted with deep neural networks to derive e.g. saturation, pore pressure and porosity from rock physical attributes. The method is demonstrated with a 65 m deep unconsolidated high porosity reservoir at the Svelvik ridge, Norway. Tests for the most suitable structure of the neural network are carried out. Saturation and pressure can be meaningfully determined under condition of a gas-free baseline with known pressure and data from an accurate seismic campaign, preferably cross-well seismic. Including seismic attenuation increases the accuracy. The training requires hours, predictions just a few seconds, allowing for rapid interpretation of seismic results.

2020 ◽  
Vol 17 (3) ◽  
pp. 658-670 ◽  
Author(s):  
Xin-Peng Pan ◽  
Guang-Zhi Zhang ◽  
Jiao-Jiao Chen

Geophysics ◽  
1998 ◽  
Vol 63 (5) ◽  
pp. 1604-1617 ◽  
Author(s):  
Zhijing Wang ◽  
Michael E. Cates ◽  
Robert T. Langan

A carbon dioxide (CO2) injection pilot project is underway in Section 205 of the McElroy field, West Texas. High‐resolution crosswell seismic imaging surveys were conducted before and after CO2 flooding to monitor the CO2 flood process and map the flooded zones. The velocity changes observed by these time‐lapse surveys are typically on the order of −6%, with maximum values on the order of −10% in the vicinity of the injection well. These values generally agree with laboratory measurements if the effects of changing pore pressure are included. The observed dramatic compressional ([Formula: see text]) and shear ([Formula: see text]) velocity changes are considerably greater than we had initially predicted using the Gassmann (1951) fluid substitution analysis (Nolen‐Hoeksema et al., 1995) because we had assumed reservoir pressure would not change from survey to survey. However, the post‐CO2 reservoir pore fluid pressure was substantially higher than the original pore pressure. In addition, our original petrophysical data for dry and brine‐saturated reservoir rocks did not cover the range of pressures actually seen in the field. Therefore, we undertook a rock physics study of CO2 flooding in the laboratory, under the simulated McElroy pressures and temperature. Our results show that the combined effects of pore pressure buildup and fluid substitution caused by CO2 flooding make it petrophysically feasible to monitor the CO2 flood process and to map the flooded zones seismically. The measured data show that [Formula: see text] decreases from a minimum 3.0% to as high as 10.9%, while [Formula: see text] decreases from 3.3% to 9.5% as the reservoir rocks are flooded with CO2 under in‐situ conditions. Such [Formula: see text] and [Formula: see text] decreases, even if averaged over all the samples measured, are probably detectable by either crosswell or high‐resolution surface seismic imaging technologies. Our results show [Formula: see text] is sensitive to both the CO2 saturation and the pore pressure increase, but [Formula: see text] is particularly sensitive to the pore pressure increase. As a result, the combined [Formula: see text] and [Formula: see text] changes caused by the CO2 injection may be used, at least semiquantitatively, to separate CO2‐flooded zones with pore pressure buildup from those regions without pore pressure buildup or to separate CO2 zones from pressured‐up, non‐CO2 zones. Our laboratory results show that the largest [Formula: see text] and [Formula: see text] changes caused by CO2 injection are associated with high‐porosity, high‐permeability rocks. In other words, CO2 flooding and pore pressure buildup decrease [Formula: see text] and [Formula: see text] more in high‐porosity, high‐permeability samples. Therefore, it may be possible to delineate such high‐porosity, high‐permeability streaks seismically in situ. If the streaks are thick enough compared to seismic resolution, they can be identified by the larger [Formula: see text] or [Formula: see text] changes.


2018 ◽  
Vol 6 (3) ◽  
pp. SG41-SG47
Author(s):  
Yangjun (Kevin) Liu ◽  
Michael O’Briain ◽  
Cara Hunter ◽  
Laura Jones ◽  
Emmanuel Saragoussi

In shale-dominated clastic lithology environments, a rock-physics model relating velocity and pore pressure (PP) can be calibrated and used to convert velocity to PP properties. The crossvalidation between velocity and overpressure, which follows the geology, can be used to better understand the model, help to build an initial velocity model, and allow selecting tomography solutions with more confidence. The velocity model developed using this approach is more plausible and more suitable for subsequent PP analysis. We highlight the application of this method in areas with poor seismic illumination and insufficient well control.


2018 ◽  
Vol 6 (4) ◽  
pp. SM1-SM8 ◽  
Author(s):  
Tingting Zhang ◽  
Yuefeng Sun

Fractured zones in deeply buried carbonate hills are important because they often have better permeability resulting in prolific production than similar low-porosity rocks. Nevertheless, their detection poses great challenge to conventional seismic inversion methods because they are mostly low in acoustic impedance and bulk modulus, hardly distinguishable from high-porosity zones or mudstones. A proxy parameter of pore structure defined in a rock-physics model, the so-called Sun model, has been used for delineating fractured zones in which the pore structure parameter is relatively high, whereas the porosity is low in general. Simultaneous seismic inversion of the pore structure parameter and porosity proves to be difficult and nontrivial in practice. Although the pore structure parameter is well-defined at locations where density, P-, and S-velocity are known from logs, estimation of P- and S-velocity information, especially density information from prestack seismic data is rather challenging. A three-step iterative inversion method, which uses acoustic, gradient, and elastic impedance from angle-stacked seismic data as input to the rock-physics model for calculating porosity and bulk and shear pore structure parameters simultaneously, is proposed and implemented to solve this problem. The methodology is successfully tested with well logs and seismic data from a deeply buried carbonate hill in the Bohai Bay Basin, China.


2015 ◽  
Vol 3 (1) ◽  
pp. SE1-SE11 ◽  
Author(s):  
Nader Dutta ◽  
Bhaskar Deo ◽  
Yangjun (Kevin) Liu ◽  
Krishna Ramani ◽  
Jerry Kapoor ◽  
...  

We developed an integrated method that can better constrain subsalt tomography using geology, thermal history modeling, and rock-physics principles. This method, called rock-physics-guided velocity modeling for migration uses predicted pore pressure as a guide to improve the quality of the earth model. We first generated a rock-physics model that provided a range of plausible pore pressure that lies between hydrostatic (lowest possible pressure) and fracture pressure (highest possible pressure). The range of plausible pore pressures was then converted into a range of plausible depth varying velocities as a function of pore pressure that is consistent with geology and rock physics. Such a range of plausible velocities is called the rock-physics template. Such a template (constrained by geology) was then used to flatten the seismic gathers. We call this the pore-pressure scan technique. The outcome of the pore-pressure scan process was an “upper” and “lower” bound of pore pressure for a given earth model. Such velocity bounds were then used as constraints on the subsequent tomography, and further iterations were carried out. The integrated method not only flattened the common image point gathers but also limited the velocity field to its physically and geologically plausible range without well control; for example, in the study area it produced a better image and pore-pressure prognosis below salt. We determined that geologic control is essential, and we used it for stratigraphy, structure, and unconformity, etc. The method had several subsalt applications in the Gulf of Mexico and proved that subsalt pore pressure can be reliably predicted.


2020 ◽  
Author(s):  
Bastien Dupuy ◽  
Anouar Romdhane ◽  
Peder Eliasson

<p>CO<sub>2</sub> storage operators are required to monitor storage safety during injection with a long-term perspective (Ringrose and Meckel, 2019), implying that efficient measurement, monitoring and verification (MMV) plans are of critical importance for the viability of such projects. MMV plans usually include containment, conformance and contingency monitoring. Conformance monitoring is carried out to verify that observations from monitoring data are consistent with predictions from prior reservoir modelling within a given uncertainty range. Quantitative estimates of relevant reservoir parameters (e.g. pore pressure and fluid saturations) are usually derived from geophysical monitoring data (e.g. seismic, electromagnetic and/or gravity data) and potential prior knowledge of the storage reservoir.</p><p>In this work, we describe and apply a two-step strategy combining geophysical and rock physics inversions for quantitative CO<sub>2</sub> monitoring. Bayesian formulations are used to propagate and account for uncertainties in both steps (Dupuy et al., 2017). We apply our workflow to data from the Sleipner CO<sub>2</sub> storage project, located offshore Norway. At Sleipner, the CO<sub>2</sub> has been injected at approx. 1000 m deep, in the high porosity, high permeability Utsira aquifer sandstone since 1996 with an approximate rate of 1 million tonnes per year. We combine seismic full waveform inversion and rock physics inversion to show that 2D spatial distribution of CO<sub>2</sub> saturation can be obtained. Appropriate and calibrated rock physics models need to take into account the way fluid phases are mixed together (uniform to patchy mixing) and the trade-off effects between pore pressure and fluid saturation. For the Sleipner case, we show that the pore pressure build-up can be neglected and that the derived CO<sub>2</sub> saturation distributions mainly depend on P-wave velocities and on the rock physics model. The CO<sub>2</sub> saturation is larger at the top of the reservoir and the mixing tends to be more uniform. These mixing properties are, however, one of the main uncertainties in the inversion. We discuss the added value of a joint rock physics inversion approach, where multi-physics (electromagnetic, seismic, gravimetry), and multi-parameter inversion can be used to reduce the under-determination of the inverse problem and to better discriminate pressure, saturation, and fluid mixing effects.</p><p>Acknowledgements:</p><p>This publication has been produced with support from the NCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Aker Solutions, Ansaldo Energia, CoorsTek Membrane Sciences, Emgs, Equinor, Gassco, Krohne, Larvik Shipping, Lundin, Norcem, Norwegian Oil and Gas, Quad Geometrics, Total, Vår Energi, and the Research Council of Norway (257579/E20).</p><p>References:</p><p>Dupuy, B., Romdhane, A., Eliasson, P., Querendez, E., Yan, H., Torres, V. A., and Ghaderi, A. (2017). Quantitative seismic characterization of CO<sub>2</sub> at the Sleipner storage site, North Sea. Interpretation, 5(4):SS23–SS42.</p><p>Ringrose, P. S. and Meckel, T. A. (2019). Maturing global CO<sub>2</sub> storage resources on offshore continental margins to achieve 2DS emissions reductions. Scientific Reports, 9(1):1–10.</p>


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 711
Author(s):  
Zdzisław Kaliniewicz ◽  
Dariusz J. Choszcz

Viburnum is a genus of colorful and ornamental plants popular in landscape design on account of their high esthetic appeal. The physical properties of viburnum seeds have not been investigated in the literature to date. Therefore, the aim of this study was to characterize the seeds of selected Viburnum species and to search for potential relationships between their physical attributes for the needs of seed sorting operations. The basic physical parameters of the seeds of six Viburnum species were measured, and the relationships between these attributes were determined in correlation and regression analyses. The average values of the evaluated parameters were determined in the following range: terminal velocity—from 5.6 to 7.9 m s−1, thickness—from 1.39 to 1.87 mm, width—from 3.59 to 6.33 mm, length—from 5.58 to 7.44 mm, angle of external friction—from 36.7 to 43.8°, mass—from 16.7 to 35.0 mg. The seeds of V. dasyanthum, V. lentago and V. sargentii should be sorted in air separators, and the seeds of V. lantana and V. opulus should be processed with the use of mesh screens with round apertures to obtain uniform size fractions. The seeds of V. rhytodophyllum cannot be effectively sorted into batches with uniform seed mass, but they can be separated into groups with similar dimensions.


Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. N11-N19 ◽  
Author(s):  
Ayako Kameda ◽  
Jack Dvorkin ◽  
Youngseuk Keehm ◽  
Amos Nur ◽  
William Bosl

Numerical simulation of laboratory experiments on rocks, or digital rock physics, is an emerging field that may eventually benefit the petroleum industry. For numerical experimentation to find its way into the mainstream, it must be practical and easily repeatable — i.e., implemented on standard hardware and in real time. This condition reduces the size of a digital sample to just a few grains across. Also, small physical fragments of rock, such as cuttings, may be the only material available to produce digital images. Will the results be meaningful for a larger rock volume? To address this question, we use a number of natural and artificial medium- to high-porosity, well-sorted sandstones. The 3D microtomography volumes are obtained from each physical sample. Then, analogous to making thin sections of drill cuttings, we select a large number of small 2D slices from a 3D scan. As a result, a single physical sample produces hundreds of 2D virtual-drill-cuttings images. Corresponding 3D pore-space realizations are generated statistically from these 2D images; fluid flow is simulated in three dimensions, and the absolute permeability is computed. The results show that small fragments of medium– to high-porosity sandstones that are statistically subrepresentative of a larger sample will not yield the exact porosity and permeability of the sample. However, a significant number of small fragments will yield a site-specific permeability-porosity trend that can then be used to estimate the absolute permeability from independent porosity data obtained in the well or inferred from seismic techniques.


Sign in / Sign up

Export Citation Format

Share Document