Permeability-porosity transforms from small sandstone fragments

Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. N11-N19 ◽  
Author(s):  
Ayako Kameda ◽  
Jack Dvorkin ◽  
Youngseuk Keehm ◽  
Amos Nur ◽  
William Bosl

Numerical simulation of laboratory experiments on rocks, or digital rock physics, is an emerging field that may eventually benefit the petroleum industry. For numerical experimentation to find its way into the mainstream, it must be practical and easily repeatable — i.e., implemented on standard hardware and in real time. This condition reduces the size of a digital sample to just a few grains across. Also, small physical fragments of rock, such as cuttings, may be the only material available to produce digital images. Will the results be meaningful for a larger rock volume? To address this question, we use a number of natural and artificial medium- to high-porosity, well-sorted sandstones. The 3D microtomography volumes are obtained from each physical sample. Then, analogous to making thin sections of drill cuttings, we select a large number of small 2D slices from a 3D scan. As a result, a single physical sample produces hundreds of 2D virtual-drill-cuttings images. Corresponding 3D pore-space realizations are generated statistically from these 2D images; fluid flow is simulated in three dimensions, and the absolute permeability is computed. The results show that small fragments of medium– to high-porosity sandstones that are statistically subrepresentative of a larger sample will not yield the exact porosity and permeability of the sample. However, a significant number of small fragments will yield a site-specific permeability-porosity trend that can then be used to estimate the absolute permeability from independent porosity data obtained in the well or inferred from seismic techniques.

Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. D45-D52 ◽  
Author(s):  
Jack Dvorkin ◽  
Qian Fang ◽  
Naum Derzhi

We tested computational benchmarking data for the absolute permeability, electrical formation factor, and elastic moduli based on the Finney pack, a physical dense random pack of identical spheres digitally rendered into a 3D rectangular coordinate system, as the starting digital object. It is altered by (a) changing the radius of each sphere and (b) geometrically inverting these new packs by swapping grains and pores. Porosity, the absolute permeability, electrical formation factor, and elastic moduli are computed for all these alterations. The direct (grain-based) objects are relevant to clastic rock, and the inverse objects are proxies for carbonates with moldic pores. To corroborate these computational results, we matched the permeability versus porosity, formation factor versus porosity, and elastic moduli versus porosity trends they form by established theoretical rock physics models. These trends persisted when we reduced the scale of investigation by subsampling some of the digital objects under examination.


2018 ◽  
Vol 18 (4) ◽  
pp. 141-147 ◽  
Author(s):  
Ivan Belozerov

Digital core modelling is a vital task assessing original-oil-in-place. This technology can be seen as an additional tool for physical experiments capable of providing fast and efficient modelling of porous media. The objective of the paper is to determine experimentally the porosity and permeability properties of rocks and justify the possibility of using them for digital core modelling. The paper also validates feasibility of using the results of lithologic and petrographic surveys of thin sections in digital core modelling. The experimental studies of reservoir conditions allowed us to obtain curves of the dependence between the kerosene permeability of the terrigenous reservoir of the Buff Berea field and the temperature and to determine its main porosity and permeability properties. The paper also validates feasibility of applying the results of lithologic and petrographic surveys of thin sections of the reservoir to form the structure of the pore space of a digital core model by machine learning. The choice of this reservoir stems from the fact that the terrigenous sandstones of Berea Sandstone (USA) are characterised by minimal anisotropy of porosity and permeability properties, relatively high porosity and permeability, as well as uniformly sized grains of the composing rocks and good sorting. Oil industry experts therefore consider samples of these rocks to be most suitable for conducting applied research and testing various technologies. The results obtained were used to select the parameters required for modelling filtration flows in a digital model of the core.


2020 ◽  
Author(s):  
Silvana Magni ◽  
Max Cooper ◽  
Piotr Szymczak

<p>Dissolution by a reactive flow is a complex phenomenon influenced by a number of different parameters, including flow rate, diffusion rate of the reactant, reaction rate and the pore space characteristics of the host rock. Depending on the values of these parameters, the dissolution patterns will have different morphological features. In particular, there is range of parameters where the dissolution front becomes unstable, which is accompanied by a formation of pronounced dissolution channels, which are called solution pipes in geological literature and wormholes in the petroleum industry, where they are produced to stimulate the flow from oil reservoirs. In the natural settings, these features are formed in rocks with a very high porosity and then with a rather large flow rate. Their shapes are strongly related to their characteristic sizes. At the macroscale (1-10metres) they are usually almost cylindrical with a diameter from a few cm up to a meter, while at microscale they show a highly ramified, fractal-like shape. To investigate this variability and to understand their formation and evolution, we are conducting microfluidic experiments using a self-constructed microfluidic cell. We are using a system consisting of two polycarbonate chips in which it is possible to have a control on flow rate and on the aperture. The lower plate has an indentation that can be filled with gypsum, while on the upper chip there is a reservoir that allows water to be supplied to the system in a controlled way. We are using powder gypsum during these experiments because it has a very simple chemistry, high solubility in water and therefore allows a greater speed of dissolution The two chips are joined together with an ultrathin, double coated tape of variable thickness that allows us to control the aperture of the system, which can thus be regarded as an analog fracture. As the gypsum chip is dissolved, we observe the appearance of fingers of different shapes, depending on the flow rate and the aperture. We report the results of these experiments and relate the observed features with the natural shapes found in the karst systems. We also investigate how the shapes of the pipes change as we vary the flow rate periodically, which reflects annual variations in the flow in the natural karst systems.</p><p><strong>Key words: dissolution, solution pipes, microfluidics</strong></p><p> </p><p> </p>


Author(s):  
P.J. Lea ◽  
M.J. Hollenberg

Our current understanding of mitochondrial ultrastructure has been derived primarily from thin sections using transmission electron microscopy (TEM). This information has been extrapolated into three dimensions by artist's impressions (1) or serial sectioning techniques in combination with computer processing (2). The resolution of serial reconstruction methods is limited by section thickness whereas artist's impressions have obvious disadvantages.In contrast, the new techniques of HRSEM used in this study (3) offer the opportunity to view simultaneously both the internal and external structure of mitochondria directly in three dimensions and in detail.The tridimensional ultrastructure of mitochondria from rat hepatocytes, retinal (retinal pigment epithelium), renal (proximal convoluted tubule) and adrenal cortex cells were studied by HRSEM. The specimens were prepared by aldehyde-osmium fixation in combination with freeze cleavage followed by partial extraction of cytosol with a weak solution of osmium tetroxide (4). The specimens were examined with a Hitachi S-570 scanning electron microscope, resolution better than 30 nm, where the secondary electron detector is located in the column directly above the specimen inserted within the objective lens.


Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


Soil Research ◽  
1991 ◽  
Vol 29 (6) ◽  
pp. 777 ◽  
Author(s):  
AJ Ringrose-Voase

Micromorphological observation can provide insights into soil structure and aid interpretation of soil behaviour. Undisturbed samples are taken in the field and impregnated. They are used to prepare thin sections or images of the macropore structure using fluorescent photography. Sections can also be obtained at macro, meso and submicroscopic scales. The various elements of soil structure observed micromorphologically can be classified into pore space, physical, distribution and orientation fabrics, and associated structures. Examples of the importance of features in each category are given. Image analysis, especially when computerized, provides a way of parameterizing micromorphological observations. To date it has been used primarily on images of macropore space at the meso and microscopic scales. Such images can be digitized and segmented to show pore space and solid. The pore space can be allocated to pore types. This aids the estimation of 3-D parameters from I-D and 2-D measurements made on the image using stereology. Various ways of using structural parameters to compare structures are discussed. Applications for micromorphological observations, especially when quantitative, include comparison of structures formed by different management techniques. Structural measurements can aid interpretation of soil behaviour as described by physical measurements. They also have a role in estimating the representative elementary volume, on which physical measurements should be made, and in calibrating field estimates of soil structure.


2021 ◽  
Author(s):  
Vladislav Vasilevich Alekseev ◽  
Denis Mihaylovich Orlov ◽  
Dmitry Anatolevich Koroteev

Abstract The approaches of building and methods of using the digital core are currently developing rapidly. The use of these methods makes it possible to obtain petrophysical information by non-destructive methods quickly. Digital rock physics includes two main stages: constructing models and modeling various physical processes on the obtained models. Our work proposes using deep learning methods for mineral and pore space segmentation instead of classical methods such as threshold image processing. Deep neural networks have long been able to show their advantages in many areas of computer vision. This paper proposes and tests methods that help identify different minerals in images from a scanning electron microscope. We used images of rocks of the Achimov formation, which are arkoses, as samples. We tested various deep neural networks such as LinkNet, U-Net, ResUNet, and pix2pix and identified those that performed best in segmentation.


Author(s):  
J. Hinebaugh ◽  
Z. Fishman ◽  
A. Bazylak

An unstructured, two-dimensional pore network model is employed to describe the effect of through-plane porosity profiles on liquid water saturation within the gas diffusion layer (GDL) of the polymer electrolyte membrane fuel cell. Random fibre placements are based on the porosity profiles of six commercially available GDL materials recently obtained through x-ray computed tomography experiments. The pore space is characterized with a Voronoi diagram, and invasion percolation-based simulations are performed. It is shown that water tends to accumulate in regions of relatively high porosity due to the lower associated capillary pressures. It is predicted that GDLs tailored to have smooth porosity profiles will have fewer pockets of high saturation levels within the bulk of the material.


Tellus B ◽  
2004 ◽  
Vol 56 (4) ◽  
pp. 312-321 ◽  
Author(s):  
Adam I. Hirsch ◽  
Susan E.: Trumbore ◽  
Michael L. Goulden

2014 ◽  
Vol 51 (8) ◽  
pp. 783-796 ◽  
Author(s):  
Simon Weides ◽  
Inga Moeck ◽  
Jacek Majorowicz ◽  
Matthias Grobe

Recent geothermal exploration indicated that the Cambrian Basal Sandstone Unit (BSU) in central Alberta could be a potential target formation for geothermal heat production, due to its depth and extent. Although several studies showed that the BSU in the shallower Western Canada Sedimentary Basin (WCSB) has good reservoir properties, almost no information exists from the deeper WCSB. This study investigated the petrography of the BSU in central Alberta with help of drill cores and thin sections from six wells. Porosity and permeability as important reservoir parameters for geothermal utilization were determined by core testing. The average porosity and permeability of the BSU is 10% and <1 × 10−14 m2, respectively. A zone of high porosity and permeability was identified in a well located in the northern part of the study area. This study presents the first published geomechanical tests of the BSU, which were obtained as input parameters for the simulation of hydraulic stimulation treatments. The BSU has a relatively high unconfined compressive strength (up to 97.7 MPa), high cohesion (up to 69.8 MPa), and a remarkably high friction coefficient (up to 1.22), despite a rather low tensile strength (<5 MPa). An average geothermal gradient of 35.6 °C/km was calculated from about 2000 temperature values. The temperature in the BSU ranges from 65 to 120 °C. Results of this study confirm that the BSU is a potential geothermal target formation, though hydraulic stimulation treatments are required to increase the permeability of the reservoir.


Sign in / Sign up

Export Citation Format

Share Document