Modeling of fiber-optic strain responses to hydraulic fracturing

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. A45-A50
Author(s):  
Zhishuai Zhang ◽  
Zijun Fang ◽  
Joe Stefani ◽  
James DiSiena ◽  
Dimitri Bevc ◽  
...  

We modeled cross-well strain/strain rate responses of fiber optic sensing, including distributed strain sensing (DSS) and low-frequency distributed acoustic sensing (DAS), to hydraulic stimulation. DSS and low-frequency DAS have been used to measure strain or the strain rate to characterize hydraulic fractures. However, the current application of DSS/DAS is limited to acquisition, processing, and qualitative interpretations. The lack of geomechanical models hinders the development of the technology toward quantitative interpretation and inversion. We have developed a strategy to use the displacement discontinuity method to model the strain field around kinematically propagating fractures. For a horizontal monitoring well, modeling results were able to explain the heart-shaped extending pattern before a fracture hit, the polarity flip due to fracture interaction during stimulation, and the V-shaped pattern when a fracture does not intersect with the monitoring well. For a vertical monitoring well, modeling shows the different characters of strain rate responses when a fracture is near and far away from a vertical monitoring well. We also investigated the effects of fractures with various geometries such as elliptic and layered fractures. We compared and verified the modeling with field data from the Hydraulic Fracturing Test Site 2, a research experiment performed in the Permian Basin. Our modeling work can be used to identify patterns in field observations. The results also help to improve acquisition design and lay the groundwork for quantitative interpretation and inversion.

SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Yunhui Tan ◽  
Shugang Wang ◽  
Margaretha C. M. Rijken ◽  
Kelly Hughes ◽  
Ivan Lim Chen Ning ◽  
...  

Summary Recently more distributed acoustic sensing (DAS) data have been collected during hydraulic fracturing in shale. Low-frequency DAS signals show patterns that are intuitively consistent with the understanding of the strain field around hydraulic fractures. This study uses a fracture simulator combined with a finite element solver to further understand the various patterns of the strain field caused by hydraulic fracturing. The results can serve as a “type-curve” template for the further interpretation of cross-well strain field plots. Incorporating detailed pump schedule and fracturing fluid/proppant properties, we use a hydraulic fracture simulator to generate fracture geometries, which are then passed to a finite element solver as boundary conditions for elastic-static calculation of the strain field. Because the finite element calculated strain is a tensor, it needs to be projected along the monitoring well trajectory to be comparable with the DAS strain, which is uniaxial. Moreover, the calculated strain field is transformed into a time domain using constant fracture propagation velocity. Strain rate is further derived from the simulated strain field using differentiation along the fracture propagation direction. Scenarios including a single planar hydraulic fracture, a single fracture with a discrete fracture network (DFN), and multiple planar hydraulic fractures in both vertical and horizontal directions were studied. The scenarios can be differentiated in the strain patterns on the basis of the finite element simulation results. In general, there is a tensile heart-shaped zone in front of the propagating fracture tip shown along the horizontal strain direction on both strain and strain rate plots. On the sides, there are compressional zones parallel to the fracture. The strain field projects beyond the depth where the hydraulic fracture is present. Patterns from strain rate can be used to distinguish whether the fracture is intersecting the fiber. Along the vertical direction, the transition zone depicts the upper boundary of the fracture. A complex fracture network with DFN shows a much more complex pattern compared with a single planar fracture. Multiple planar fractures show polarity reversals in horizontal fiber because of interactions between fractures. Data from the Hydraulic Fracturing Test Site 2 (HFTS2) experiment were used to validate the simulated results. The application of the study is to provide a template to better interpret hydraulic fracture characteristics using low-frequency DAS strain-monitoring data. To our understanding, there are no comprehensive templates for engineers to understand the strain signals from cross-well fiber monitoring. The results of this study will guide engineers toward better optimization of well spacing and fracturing design to minimize well interference and improve efficiency.


2021 ◽  
Author(s):  
Mengyuan Chen ◽  
Jin Tang ◽  
Ding Zhu ◽  
Alfred Daniel Hill

Abstract Distributed acoustic sensing (DAS) has been used in the oil and gas industry as an advanced technology for surveillance and diagnostics. Operators use DAS to monitor hydraulic fracturing activities, to examine well stimulation efficacy, and to estimate complex fracture system geometries. Particularly, low-frequency DAS can detect geomechanical events such as fracture-hits as hydraulic fractures propagate and create strain rate variations. Analysis of DAS data today is mostly done post-job and subject to interpretation methods. However, the continuous and dense data stream generated live by DAS offers the opportunity for more efficient and accurate real-time data-driven analysis. The objective of this study is to develop a machine learning-based workflow that can identify and locate fracture-hit events in simulated strain rate response that is correlated with low-frequency DAS data. In this paper, "fracture-hit" refers to a hydraulic fracture originated from a stimulated well intersecting an offset well. We start with building a single fracture propagation model to produce strain rate patterns observed at a hypothetical monitoring well. This model is then used to generate two sets of strain rate responses with one set containing fracture-hit events. The labeled synthetic data are then used to train a custom convolutional neural network (CNN) model for identifying the presence of fracture-hit events. The same model is trained again for locating the event with the output layer of the model replaced with linear units. We achieved near-perfect predictions for both event classification and localization. These promising results prove the feasibility of using CNN for real-time event detection from fiber optic sensing data. Additionally, we used image analysis techniques, including edge detection, for recognizing fracture-hit event patterns in strain rate images. The accuracy is also plausible, but edge detection is more dependent on image quality, hence less robust compared to CNN models. This comparison further supports the need for CNN applications in image-based real-time fiber optic sensing event detection.


2021 ◽  
Author(s):  
Smith Edward Leggett ◽  
Ding Zhu ◽  
Alfred Daniel Hill

Abstract Fiber-optic cables cemented outside of the casing of an unconventional well measure cross-well strain changes during fracturing of neighboring wells with low-frequency distributed acoustic sensing (LF-DAS). As a hydraulic fracture intersects an observation well instrumented with fiber-optic cables, fracture fluid injected at ambient temperatures can cool a section of the sensing fiber. Often, LF-DAS and distributed temperature sensing (DTS) cables are run in tandem, enabling the detection of such cooling events. The increasing use of LF-DAS for characterizing unconventional hydraulic fracture completions demands an investigation of the effects of temperature on the measured strain response by LF-DAS. Researchers have demonstrated that LF-DAS can be used to extract the temporal derivative of temperature for use as a differential-temperature-gradient sensor. However, differential-temperature-gradient sensing is predicated on the ability to filter strain components out of the optical signal. In this work, beginning with an equation for optical phase shift of LF-DAS signals, a model relating strain, temperature, and optical phase shift is explicitly developed. The formula provides insights into the relative strength of strain and temperature effects on the phase shift. The uncertainty in the strain-rate measurements due to thermal effects is estimated. The relationship can also be used to quantify uncertainties in differential-temperature-gradient sensors due to strain perturbations. Additionally, a workflow is presented to simulate the LF-DAS response accounting for both strain and temperature effects. Hydraulic fracture geometries are generated with a 3D fracture simulator for a multi-stage unconventional completion. The fracture width distributions are imported by a displacement discontinuity method program to compute the strain-rates along an observation well. An analytic model is used to approximate the temperature in the fracture. Using the derived formulae for optical phase shift, the model outputs are then used to compute the LF-DAS response at a fiber-optic cable, enabling the generation of waterfall plots including both strain and thermal effects. The model results suggest that before, during, and immediately following a fracture intersecting a well instrumented with fiber, the strain on the fiber drives the LF-DAS signal. However, at later times, as completion fluid cools the observation well, the temperature component of the LF-DAS signal can equal or exceed the strain component. The modeled results are compared to a published field case in an attempt to enhance interpretation of LF-DAS waterfall plots. Finally, we propose a sensing configuration in order to identify the events when "wet fractures" (fractures with fluids) intersect the observation well.


2021 ◽  
Vol 73 (07) ◽  
pp. 39-42
Author(s):  
Kan Wu ◽  
Yongzan Liu ◽  
Ge Jin ◽  
George Moridis

The propagation process and geometry of hydraulic fractures depend on complex interactions among the induced fractures and the pre-existing rock fabric, the heterogeneous rock properties, and the stress state. Accurate characterization of the resulting complex hydraulic-fracture geometry remains challenging. Fiber-optic-based distributed acoustic sensing (DAS) measurements have been used for monitoring hydraulic fracturing in adjacent treatment wells. DAS requires an optical fiber attached to the wellbore to transmit the laser energy into the reservoir. Each section of the fiber scatters a small portion of the laser energy back to a surface sensing unit, which uses interferometry techniques to determine strain changes along with the fiber. DAS data in offset wells fall in the low-frequency bands, which has been proven to be a powerful attribute for the characterization of the geometry of hydraulic fractures. Numerous recently published field examples demonstrate the potential of low-frequency DAS (LF-DAS) data for the detailed characterization of the hydraulic fracture geometry. Understanding the fracture-induced rock deformation associated with LF-DAS signals would be beneficial for the better interpretation of real-time data. However, interpretation of LF-DAS measurement is challenging due to the complexity of the subsurface conditions, in addition to potential unanticipated completion issues such as perforation failure, stage isolation failure, etc. All current research efforts focus on the qualitative interpretation of field data.In this study, we quantified the hydraulic fracture propagation process and described the fracture geometry by developing a geomechanical forward model and a Green’s function-based inversion model for the LF-DAS data interpretation, substantially enhancing the value of the LF-DAS data in the process. The work has a significant transformative potential, involving a tool package with developed forward and inversion models that can provide crucial insights for the optimization of hydraulic-fracturing treatments and reservoir development. Methodology The tool package can be used directly in the field to interpret LF-DAS data and monitor hydraulic fracture propagation. Raw data from the field measurement can be automatically processed. The geomechanics forward model we developed can quantify and analyze the strain-rate response from the LF-DAS measurements based on the 3D displacement discontinuity method. Fracture hits are detected by calculating three 1D features along the channel (location) axis, i.e., the maximum strain rate, the summation of strain rates, and the summation of strain-rate amplitudes. Channels with fracture hits usually exhibit significant peak values of these three features. We proposed general guide-lines for fracture-hit detection based on the quantitative analysis of strain/strain-rate responses during the multistage fracturing treatment. The details of the forward model can be found in Liu et al. (SPE 202482, 204457, AMRA-2020-1426). Additionally, we developed a novel Green’s function-based inversion model to qualify fracture width and height based on the determined fracture hits. The strain field that is estimated from the integration of the strain rates measured by the LF-DAS data along the offset monitoring well is related to the fracture widths through a geomechanics Green’s function. The resulting linear system of equations is solved by the least-square method. Details can be found in Liu et al. (SPE 204158, 205379, 204225).


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Fuping Feng ◽  
Xu Han ◽  
Yu Suo ◽  
Heyuan Wang ◽  
Qinyou Ye ◽  
...  

Abstract Large-scale staged hydraulic fracturing stimulation technology is an effective method to increase shale oil and gas recovery. However, cracks will appear along with the cementing interface and expand under the drive of fluid while hydraulic fracturing, failing wellbore sealing. To solve this problem, the synchronous propagation model of hydraulic fractures and cementing interfacial cracks in hydraulic fracturing is established. The Newton iteration method and displacement discontinuity method are used to solve the propagation length of each fracture, and the effects of cement sheath parameters and fracture parameters on the interface failure range are studied. The results show that when multiple hydraulic fractures expand, the interfacial cracks are also affected by “stress shadow,” offering an asymmetric expansion, and the cementing interfacial cracks in the area between hydraulic fractures are easier to expand. The failure range of interface between the hydraulic fractures expands rapidly if the cement elastic modulus increases from 5 GPa to 10 GPa; while the cement elastic modulus is higher than 10 GPa, the failure area is mainly affected by the number of hydraulic fractures; the failure range is not affected by the number of hydraulic fractures if the hydraulic fracture spacing is less than 10 m or more than 30 m; while the crack spacing is between 10 m and 30 m, the more the number of hydraulic fractures, the easier it is to cause the interface failure range to increase and connect. The research results can provide a theoretical basis for the optimization of cement slurry systems and fracturing parameters.


SPE Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Smith Edward Leggett ◽  
Ding Zhu ◽  
Alfred Daniel Hill

Summary Fiber-optic cables cemented outside of the casing of an unconventional well measure crosswell strain changes during fracturing of neighboring wells with low-frequency distributed acoustic sensing (LF-DAS). As a hydraulic fracture intersects an observation well instrumented with fiber-optic cables, the fracture fluid injected at ambient temperatures can cool a section of the sensing fiber. Often, LF-DAS and distributed temperature sensing (DTS) cables are run in tandem, enabling the detection of such cooling events. The increasing use of LF-DAS for characterizing unconventional hydraulic fracture completions demands an investigation of the effects of temperature on the measured strain response by LF-DAS. Researchers have demonstrated that LF-DAS can be used to extract the temporal derivative of temperature for use as a differential-temperature-gradient sensor. However, differential-temperature-gradient sensing is predicated on the ability to filter strain components out of the optical signal. In this work, beginning with an equation for optical phase shift of LF-DAS signals, a model relating strain, temperature, and optical phase shift is explicitly developed. The formula provides insights into the relative strength of strain and temperature effects on the phase shift. The uncertainty in the strain-rate measurements due to thermal effects is estimated. The relationship can also be used to quantify uncertainties in differential-temperature-gradient sensors due to strain perturbations. Additionally, a workflow is presented to simulate the LF-DAS response accounting for both strain and temperature effects. Hydraulic fracture geometries are generated with a 3D fracture simulator for a multistage unconventional completion. The fracture width distributions are imported by a displacement discontinuity method (DDM) program to compute the strain rates along an observation well. An analytic model is used to approximate the temperature in the fracture. Using the derived formulae for optical phase shift, the model outputs are then used to compute the LF-DAS response at a fiber-optic cable, enabling the generation of waterfall plots including both strain and thermal effects. The model results suggest that before, during, and immediately following a fracture intersecting a well instrumented with fiber, the strain on the fiber drives the LF-DAS signal. However, at later times, as completion fluid cools the observation well, the temperature component of the LF-DAS signal can be equal to or exceed the strain component. The modeled results are compared to a published field case in an attempt to enhance the interpretation of LF-DAS waterfall plots. Finally, we propose a sensing configuration to identify the events when “wet fractures” (fractures with fluids) intersect the observation well.


2022 ◽  
Author(s):  
Jin Tang ◽  
Ding Zhu

Abstract In multistage hydraulic fracturing treatments, the combination of extreme large-scale pumping (high rate and volume) and the high heterogeneity of the formation (because of large contact area) normally results in complex fracture growth that cannot be simply modeled with conventional fracture models. Lack of understanding of the fracturing mechanism makes it difficult to design and optimize hydraulic fracturing treatments. Many monitoring, testing and diagnosis technologies have been applied in the field to describe hydraulic fracture development. Strain rate measured by distributed acoustic sensor (DAS) is one of the tools for fracture monitoring in complex completion scenarios. DAS measures far-field strain rate that can be of assistance for fracture characterization, cross-well fracture interference identification, and well stimulation efficiency evaluation. Many field applications have shown DAS responses on observation wells or surrounding producers when a well in the vicinity is fractured. Modeling and interpreting DAS strain rate responses can help quantitatively map fracture propagation. In this work, a methodology is developed to generate the simulated strain-rate responds to assumed fracture systems. The physical domain contains a treated well that the generate strain variation in the domain because of fracturing, and an observation well that has fiber-optic sensor installed along it to measure the strain rate responses to the fracture propagation. Instead of using a complex fracture model to forward simulate fracture propagation, this work starts from a simple 2D fracture propagation model to provide hypothetical fracture geometries in a relatively reasonable and acceptable range for both single fracture case and multiple fracture case. Displacement discontinuity method (DDM) is formulated to simulate rock deformation and strain rate responds on fiber-optic sensors. At each time step, fracture propagation is first allowed, then stress, displacement and strain field are estimated as the fracture approaches to the observation well. Afterward, the strain rate is calculated as fracture growth to generate patterns as fracture approaching. Extended simulation is conducted to monitor fracture propagation and strain rate responses. The patterns of strain rate responses can be used to recognize fracture development. Examples of strain rate responses for different fracturing conditions are presented in this paper. The relationship of injection rate distribution and strain rate responses is investigated to show the potential of using DAS measurements to diagnose multistage hydraulic fracturing treatments.


2021 ◽  
pp. 014459872198899
Author(s):  
Weiyong Lu ◽  
Changchun He

Directional rupture is one of the most important and most common problems related to rock breaking. The goal of directional rock breaking can be effectively achieved via multi-hole linear co-directional hydraulic fracturing. In this paper, the XSite software was utilized to verify the experimental results of multi-hole linear co-directional hydraulic fracturing., and its basic law is studied. The results indicate that the process of multi-hole linear co-directional hydraulic fracturing can be divided into four stages: water injection boost, hydraulic fracture initiation, and the unstable and stable propagation of hydraulic fracture. The stable expansion stage lasts longer and produces more microcracks than the unstable expansion stage. Due to the existence of the borehole-sealing device, the three-dimensional hydraulic fracture first initiates and expands along the axial direction in the bare borehole section, then extends along the axial direction in the non-bare hole section and finally expands along the axial direction in the rock mass without the borehole. The network formed by hydraulic fracture in rock is not a pure plane, but rather a curved spatial surface. The curved spatial surface passes through both the centre of the borehole and the axial direction relative to the borehole. Due to the boundary effect, the curved spatial surface goes toward the plane in which the maximum principal stress occurs. The local ground stress field is changed due to the initiation and propagation of hydraulic fractures. The propagation direction of the fractures between the fracturing boreholes will be deflected. A fracture propagation pressure that is greater than the minimum principle stress and a tension field that is induced in the leading edge of the fracture end, will aid to fracture intersection; as a result, the possibility of connecting the boreholes will increase.


2016 ◽  
Vol 23 (2) ◽  
pp. 309-316
Author(s):  
Marcin Lipiński ◽  
Przemysław Krehlik ◽  
Łukasz Śliwczyński ◽  
Łukasz Buczek ◽  
Jacek Kołodziej

Abstract The low-frequency optical-signal phase noise induced by mechanical vibration of the base occurs in field-deployed fibers. Typical telecommunication data transfer is insensitive to this type of noise but the phenomenon may influence links dedicated to precise Time and Frequency (T&F) fiber-optic transfer that exploit the idea of stabilization of phase or propagation delay of the link. To measure effectiveness of suppression of acoustic noise in such a link, a dedicated measurement setup is necessary. The setup should enable to introduce a low-frequency phase corruption to the optical signal in a controllable way. In the paper, a concept of a setup in which the mechanically induced acoustic-band optical signal phase corruption is described and its own features and measured parameters are presented. Next, the experimental measurement results of the T&F transfer TFTS-2 system’s immunity as a function of the fibre-optic length vs. the acoustic-band noise are presented. Then, the dependency of the system immunity on the location of a noise source along the link is also pointed out.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2528 ◽  
Author(s):  
Hiroshi Yamazaki ◽  
Ichiro Kurose ◽  
Michiko Nishiyama ◽  
Kazuhiro Watanabe

In this paper, a novel pendulum-type accelerometer based on hetero-core fiber optics has been proposed for structural health monitoring targeting large-scale civil infrastructures. Vibration measurement is a non-destructive method for diagnosing the failure of structures by assessing natural frequencies and other vibration patterns. The hetero-core fiber optic sensor utilized in the proposed accelerometer can serve as a displacement sensor with robustness to temperature changes, in addition to immunity to electromagnetic interference and chemical corrosions. Thus, the hetero-core sensor inside the accelerometer measures applied acceleration by detecting the rotation of an internal pendulum. A series of experiments showed that the hetero-core fiber sensor linearly responded to the rotation angle of the pendulum ranging within (−6°, 4°), and furthermore the proposed accelerometer could reproduce the waveform of input vibration in a frequency band of several Hz order.


Sign in / Sign up

Export Citation Format

Share Document