EMR Interference Signal Recognition in Coal Rock Mining Based on Recurrent Neural Networks

Geophysics ◽  
2021 ◽  
pp. 1-59
Author(s):  
yangyang Di ◽  
Enyuan Wang

The electromagnetic radiation (EMR) method is a promising geophysical method for monitoring and providing early warnings about coal rock burst disasters. In the underground mining process, personnel activities and electromechanical equipment produce EMR interference signals that affect the accuracy of EMR monitoring. Current methods for identifying the EMR interference signals mainly use their time and amplitude characteristics. However, these methods of EMR interference signal recognition and filtering need to be further improved. The advancements in the deep learning technique provide an opportunity to develop a new method for their identification and filtering. A method for EMR interference signal recognition based on deep learning algorithms is proposed. The proposed method uses bidirectional long short-term memory recurrent neural networks and Fourier transform to analyze numerous EMR interference signals along with other signals to intelligently identify and filter EMR signal sequences. The results showed that the proposed method can respond positively to EMR interferences and accurately eliminate EMR interference signals. This method can significantly improve the reliability of EMR monitoring data and effectively monitor rock burst disasters.

Author(s):  
Eugeny Yu. Shchetinin

Time Series Forecasting has always been a very important area of research in many domains because many different types of data are stored as time series. Given the growing availability of data and computing power in the recent years, Deep Learning has become a fundamental part of the new generation of Time Series Forecasting models, obtaining excellent results.As different time series problems are studied in many different fields, a large number of new architectures have been developed in recent years. This has also been simplified by the growing availability of open source frameworks, which make the development of new custom network components easier and faster.In this paper three different Deep Learning Architecture for Time Series Forecasting are presented: Recurrent Neural Networks (RNNs), that are the most classical and used architecture for Time Series Forecasting problems; Long Short-Term Memory (LSTM), that are an evolution of RNNs developed in order to overcome the vanishing gradient problem; Gated Recurrent Unit (GRU), that are another evolution of RNNs, similar to LSTM.The article is devoted to modeling and forecasting the cost of international air transportation in a pandemic using deep learning methods. The author builds time series models of the American Airlines (AAL) stock prices for a selected period using LSTM, GRU, RNN recurrent neural networks models and compare the accuracy forecast results.


2021 ◽  
Vol 35 (1) ◽  
pp. 1-10
Author(s):  
Senthil Kumar Paramasivan

In the modern era, deep learning is a powerful technique in the field of wind energy forecasting. The deep neural network effectively handles the seasonal variation and uncertainty characteristics of wind speed by proper structural design, objective function optimization, and feature learning. The present paper focuses on the critical analysis of wind energy forecasting using deep learning based Recurrent neural networks (RNN) models. It explores RNN and its variants, such as simple RNN, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN models. The recurrent neural network processes the input time series data sequentially and captures well the temporal dependencies exist in the successive input data. This review investigates the RNN models of wind energy forecasting, the data sources utilized, and the performance achieved in terms of the error measures. The overall review shows that the deep learning based RNN improves the performance of wind energy forecasting compared to the conventional techniques.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhijun Guo ◽  
Shuai Liu

In the process of wireless image transmission, there are a large number of interference signals, but the traditional interference signal recognition system is limited by various modulation modes, it is difficult to accurately identify the target signal, and the reliability of the system needs to be further improved. In order to solve this problem, a wireless image transmission interference signal recognition system based on deep learning is designed in this paper. In the hardware part, STM32F107VT and SI4463 are used to form a wireless controller to control the execution of each instruction. In the software part, aiming at the time-domain characteristics of the interference signal, the feature vector of the interference signal is extracted. With the support of GAP-CNN model, the interference signal is recognized through the training and learning of feature vector. The experimental results show that the packet loss rate of the designed system is less than 0.5%, the recognition performance is good, and the reliability of the system is improved.


2021 ◽  
Vol 7 (2) ◽  
pp. 113-121
Author(s):  
Firman Pradana Rachman

Setiap orang mempunyai pendapat atau opini terhadap suatu produk, tokoh masyarakat, atau pun sebuah kebijakan pemerintah yang tersebar di media sosial. Pengolahan data opini itu di sebut dengan sentiment analysis. Dalam pengolahan data opini yang besar tersebut tidak hanya cukup menggunakan machine learning, namun bisa juga menggunakan deep learning yang di kombinasikan dengan teknik NLP (Natural Languange Processing). Penelitian ini membandingkan beberapa model deep learning seperti CNN (Convolutional Neural Network), RNN (Recurrent Neural Networks), LSTM (Long Short-Term Memory) dan beberapa variannya untuk mengolah data sentiment analysis dari review produk amazon dan yelp.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Sign in / Sign up

Export Citation Format

Share Document