From Fold-and-Thrust Belts on Salt to Salt Deposition and Tectonics in a Fold-and-Thrust Belt, Sivas, Turkey

2015 ◽  
Author(s):  
Jean-Claude Ringenbach* ◽  
Etienne Legeay ◽  
Charlie Kergaravat ◽  
Jean-Paul Callot
2019 ◽  
Author(s):  
Richard Spitz ◽  
Arthur Bauville ◽  
Jean-Luc Epard ◽  
Boris J. P. Kaus ◽  
Anton A. Popov ◽  
...  

Abstract. Fold-and-thrust belts and associated tectonic nappes are common in orogenic regions. They exhibit a wide variety of geometries and often a considerable along-strike variation. However, the mechanics of fold-and-thrust belt formation and the control of the initial geological configuration on this formation are still incompletely understood. Here, we apply three-dimensional (3D) thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin to investigate the control of 3D laterally variable inherited structures on the fold-and-thrust belt evolution and associated nappe formation. We consider tectonic inheritance by applying an initial model configuration with horst and graben structures having laterally variable geometry and with sedimentary layers having different mechanical strength. We use a visco-plastic rheology with temperature dependent flow laws and a Drucker-Prager yield criterion. The models show the folding, detachment and horizontal displacement of sedimentary units, which resemble structures of fold and thrust nappes. The models further show the stacking of nappes. The detachment of nappe-like structures is controlled by the initial basement and sedimentary layer geometry. Significant horizontal transport is facilitated by weak sedimentary units below these nappes. The initial half-graben geometry has a strong impact on the basement and sediment deformation. Generally, deeper half-grabens generate thicker nappes and stronger deformation of the neighboring horst while shallower half-grabens generate thinner nappes and less deformation in the horst. Horizontally continuous strong sediment layers, which are not restricted to inital graben structures, cause detachment folding and not overthrusting. The amplitude of the detachment folds is controlled by the underlying graben geometry. A mechanically weaker basement favors the formation of fold nappes while stronger basement favors thrust sheets. The applied model configuration is motivated by the application of the 3D model to the Helvetic nappe system of the French-Swiss Alps. Our model is able to reproduce several first-order structural features of this nappe system, namely (i) closure of a half-graben and associated formation of the Morcles and Doldenhorn nappes, (ii) the overthrusting of a nappe resembling the Wildhorn and Glarus nappes and (iii) the formation of a nappe pile resembling the Helvetic nappes resting above the Infrahelvetic complex. Furthermore, the finite strain pattern, temperature distribution and timing of the 3D model is in broad agreement with data from the Helvetic nappe system. Our model, hence, provides a first-order 3D reconstruction of the tectonic evolution of the Helvetic nappe system based on thermo-mechanical deformation processes.


2021 ◽  
Author(s):  
Youseph Ibrahim ◽  
Patrice Rey

<p>The stacking of thrust sheets and mass transfer of sediment during fold and thrust belt accretion imposes a load on the basement and underlying mantle. This load induces an isostatic adjustment through a flexural response, which may also contribute to the overall architecture of the fold and thrust belt. Whereas plate kinematics imposes its tempo to evolving fold and thrust belts, the rheology of the mantle controls the tempo of the isostatic flexure. Using two-dimensional high-resolution numerical experiments, we explore how the interplay between the tectonic compressional rate and the isostatic flexural rate influences the structural evolution and final architecture of fold and thrust belts. </p><p>We run a suite of numerical experiments using the well-tested code Underworld. Our geological model is mapped over a 42 km by 16 km numerical grid, with a cell resolution of 80 m. The geological model consists from top to bottom of  ‘sticky air’, 4 km of sediment that alternates in competence at 500 m intervals, a 3 km thick basement, and a basal layer which - in combination with a basal kinematic boundary condition - controls the amount of isostatic flexure. Materials have a mechanical behavior that results from elasto-visco-plastic rheology. The pressure at the base of the model is held constant, and the vertical velocity is updated at each timestep. The amount of material entering or exiting the model at each point along the base scales with the density of the basal layer, which is used to control the isostatic rate. Sedimentation and erosion are self-consistent through mechanical erosion and a hillslope diffusion law. Our models show that as the ratio between tectonic and flexural rates decreases (i.e. flexure gets faster), fold and thrust belts become narrower, lower in elevation, and structurally more complex. We compare these results with natural analogs including the Cordilleran and Jura fold and thrust belts.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 276
Author(s):  
Fabrizio Cocco ◽  
Antonio Funedda

Fold-and-thrust belts have a high variability of structural styles, whose investigation provides continuous updates of the predictive models that try to better approximate the geometries recognized in the field. The majority of studies are focused on the geometry and development of folds and thrust surfaces and the amount of displacement, taking into account the role played by the involved stratigraphic succession assumed as a layer cake. We present a case study from the external zone of the Variscan fold-and-thrust belt in SW Sardinia, where it was possible to investigate the lateral and vertical variations of the mechanical properties of the involved succession, how they related to previous folding, control thrust geometry, and kinematics. In this case, the superposition of two fold systems acted as a buttress that induced extensive back-thrusting. We found that there is a close connection between the attitude of the bedding and the geometry of back thrust surfaces, shear strength during thrust propagation, and variation in the shortening amount, depending on which part of the folds were cut across. The folding-related mechanical anisotropy also seems to have induced a ductile deformation in the footwall of back-thrusts. Although the case study considers the development of back-thrust, the relations between thrust and not-layer cake geometries could also be applied to fore-thrust development.


1986 ◽  
Vol 23 (12) ◽  
pp. 2012-2023 ◽  
Author(s):  
Judith G. Patterson

Aphebian supracrustal sequences occur as outliers throughout the northwestern portion of the Churchill Structural Province of the Canadian Shield. In the Amer Lake area, medium- to high-grade, polydeformed Archean rocks are unconformably overlain by the Amer supracrustal sequence, which comprises quartzite, carbonate, mafic volcanic, and meta-arkose and meta-pelitic units. This supracrustal sequence is interpreted as having been deposited under miogeoclinal conditions, transitional to exogeoclinal.The Amer sequence crops out in a broad, west-southwest-plunging synclinorium and contains evidence of polyphase deformation that includes the following: (1) Folds plunging gently to the west-southwest and west-southwest-striking thrust faults, transected by oblique tear faults. Thrust vergence is northerly to northwesterly, onto the Archean craton. Because of the orientation of the synclinorium, there is a down plunge view of the thrusts at the eastern end of the belt. (2) Younger, localized cross folds, probably representative of progressive deformation. (3) Late, northwest-trending normal faults, with east side down.The stratigraphic elements and family of structures in the Amer Belt are similar to those found in the foreland fold and thrust belts of major Phanerozoic and Proterozoic orogens. The Amer Belt is interpreted as being a remnant of a once extensive foreland fold and thrust belt.Some workers have considered the northwestern Churchill Structural Province a large cratonic foreland of the Trans-Hudson Orogen. However, remnants of a foreland fold and thrust belt, a major batholithic complex, and profound geophysical breaks interpreted as being possible sutures are incorporated into a new tectono-stratigraphic model that proposes that a cryptic Aphebian orogen exists in the northwestern Churchill Structural Province.


2021 ◽  
Author(s):  
Pablo Granado ◽  
Pablo Santolaria ◽  
Elizabeth Wilson ◽  
Oriol Ferrer ◽  
Josep Anton Muñoz

<p>Salt and related structures have a strong influence on the formation of extensional basins during lithospheric stretching and thermal subsidence at rifted margins. Salt significantly influences as well the structural styles and kinematics of fold-and-thrust belts. We aim to characterize the structure of inverted minibasins and salt-influenced fold-and-thrust belts, but the challenge is to understand, and to match, the present day contractional structures with reasonable pre-orogenic configurations. Yet, we still lack proper understanding on the development of these salt-sediment systems and particularly, how salt tectonics is initially triggered and evolves through space and time. Two fundamental triggering mechanisms on rift to passive margin salt tectonics are known: (1) extension by gravitational collapse, and (2) differential loading. Key questions are: do these mechanisms occur at the same time or does one commonly follow the other? Which one is first and which one dominates? Does it depend on the location and timing of deformation on the passive margin? Which are the stratigraphic evidences and structural geometries that may help us to answer these questions? Recognizing the initial structural geometries of these minibasins once they have been incorporated into a fold and thrust belt is challenging but of paramount importance.</p><p>In this contribution we address some of these questions by showing a brief historical review of concepts and show end-member analogue models of fold-and-thrust belts developed from the inversion and incorporation of rift to passive margin salt basins. Our work is inspired by field observations from the Pyrenees and the Northern Calcareous Alps, as well as from present day continental margins.</p>


2021 ◽  
pp. jgs2020-207
Author(s):  
Feng Cheng ◽  
Andrew V. Zuza ◽  
Peter J. Haproff ◽  
Chen Wu ◽  
Christina Neudorf ◽  
...  

Existing models of intracontinental deformation have focused on plate-like rigid body motion v. viscous-flow-like distributed deformation. To elucidate how plate convergence is accommodated by intracontinental strike-slip faulting and block rotation within a fold–thrust belt, we examine the Cenozoic structural framework of the central Qilian Shan of northeastern Tibet, where the NW-striking, right-slip Elashan and Riyueshan faults terminate at the WNW-striking, left-slip Haiyuan and Kunlun faults. Field- and satellite-based observations of discrete right-slip fault segments, releasing bends, horsetail termination splays and off-fault normal faulting suggest that the right-slip faults accommodate block rotation and distributed west–east crustal stretching between the Haiyuan and Kunlun faults. Luminescence dating of offset terrace risers along the Riyueshan fault yields a Quaternary slip rate of c. 1.1 mm a−1, which is similar to previous estimates. By integrating our results with regional deformation constraints, we propose that the pattern of Cenozoic deformation in northeastern Tibet is compatible with west–east crustal stretching/lateral displacement, non-rigid off-fault deformation and broad clockwise rotation and bookshelf faulting, which together accommodate NE–SW India–Asia convergence. In this model, the faults represent strain localization that approximates continuum deformation during regional clockwise lithospheric flow against the rigid Eurasian continent.Supplementary material: Luminescence dating procedures and protocols is available at https://doi.org/10.17605/OSF.IO/CR9MNThematic collection: This article is part of the Fold-and-thrust belts and associated basins collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts


2017 ◽  
Vol 188 (6) ◽  
pp. 37 ◽  
Author(s):  
Bruno C. Vendeville ◽  
Tang Pengcheng ◽  
Fabien Graveleau ◽  
Huang Shaoying ◽  
Xin Wang

We conducted a series of analogue experiments on shortening of a brittle cover (dry sand) above a deep, thin, frictional detachment (glass microbeads). In some experiments, the cover was homogeneous, entirely brittle. In others, there was a thin viscous silicone layer (representing salt) embedded at mid height into the cover, and initially located in the foreland of the fold-and-thrust belt. Our goal was to determine whether or not the presence of such a décollement in the cover could have an impact on the mechanics and kinematics of the underlying subsalt thrusts. Results confirm that, once the front of the foldbelt reached the hinterland salt pinch out, the kinematics of the deeper belt changed drastically: its front stopped propagating forward, and most of the subsequent shortening was accommodated by a larger-than-normal slip along the foremost and youngest deep thrust, while, above the salt décollement, the deformation front propagated very fast, creating a very low surface slope. We hypothesize that it is the gentle sub-critical surface slope associated with rocksalt’s low viscosity that prevents the build-up of an overall surface slope steep enough to allow the underlying, deep foldbelt to continue propagating forward. Finally, one experiment in which only one half of the width of the model comprised an interbedded viscous décollement has shown that the kinematics of the deep thrust was affected even in the adjacent salt-free domain.


2019 ◽  
Vol 490 (1) ◽  
pp. 361-396 ◽  
Author(s):  
Etienne Legeay ◽  
Jean-Claude Ringenbach ◽  
Charlie Kergaravat ◽  
Alexandre Pichat ◽  
Geoffroy Mohn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document