progressive deformation
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 31)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Qiang Xie ◽  
zhihui wu ◽  
Yuxin Ban ◽  
Xiang Fu ◽  
Zhilin Cao ◽  
...  

Abstract To investigate the acoustic emission (AE) precursor detection of landslide failures, a model test aiming at reproducing the typical shear surface deformation of different landslide modes was designed. The evolution characteristics of the AE signals were analyzed in terms of AE count, cumulative AE count, AE correlation diagrams, and corresponding time-frequency properties. The test results show that for the progressive deformation mode, the AE count experiences a low-level period, an active period and a rapid increase period, and the distribution of correlation diagram hits concentrates in a relatively small scale and then gradually scatters. There is low frequency signals firstly and then high frequency signals, and the energy proportion of the high-frequency signals shows an increasing tendency. For the sudden deformation mode, the magnitude of AE count increases sharply, leading to the cumulative AE count curve rises steeply, and correlation diagram hits distribution turns into relatively scattering rapidly. Furthermore, the high frequency signals and high energy proportion appear much earlier than that of the progressive deformation mode. For steady deformation mode, however, the acoustic emission activity is quite active in the initial stage, the cumulative AE count curve rises sharply and then maintains relatively flat trend, and correlation diagram hits distribution scatters firstly, then the signal hits distribution begins to concentrate in a relatively small scale. There are intensive high-frequency hits and high energy proportion earlier, and later they tend to decay in response to smaller magnitudes of movement. Comprehensive use of multiple features can help identify landslide deformation patterns more accurately under complex natural conditions, which may provide a promising reference for the field warning monitoring of the diverse landslide failures.


2021 ◽  
Author(s):  
Hong Yan Miao ◽  
Pierre A. Faucheux ◽  
Martin levesque ◽  
Frederick Gosselin

Aluminum skins on the lower wings of most commercial aircraft are shaped using shot peen forming. This process, which involves bombarding the skins with hard shot, uses nonuniform plastic flow to induce curvatures---in the same way that differential expansion makes metal bilayers bend when heated. Here, we investigate experimentally how constraining conditions affect the final shape of peen formed parts. We report peen forming experiments for 4.9 mm thick rectangular 2024-T3 aluminum sheets of different aspect ratios uniformly shot peened on one face with a low intensity saturation treatment. Some specimens were free to deform during peening while others were elastically prestressed in a four-point bending jig. For each aspect ratio and prestress condition, residual stresses were measured near the peened surface with the hole drilling method. Additional residual stress profiles were also obtained with the slitting method. The residual stress measurements show that the progressive deformation of unconstrained specimens had the same effect as an externally applied prestress. For the peening conditions investigated, this progressive deformation caused unconstrained strips to exhibit curvatures 33% larger than identical strips held flat during peening. Furthermore, we found that the relative importance of material anisotropy and geometric effects did determine the bending direction of unconstrained specimens.


2021 ◽  
Author(s):  
Qiang Xie ◽  
Yuxin Ban ◽  
Zhihui Wu ◽  
Xiang Fu

<p>The sliding surface deformation of the soil slope mainly presents progressive failure characteristics, and serial acoustic emission (AE) signals are generated during the deformation process of progressive landslide. A model test aiming at reproducing the typical shear surface deformation of a soil slope is designed. The displacement, AE data and corresponding time-frequency characteristics are comprehensively analyzed to evaluate the progressive deformation behavior. Comparisons with different granular backfills measurements show that cumulative AE count increase proportionally with the shear surface displacement, and the experiments demonstrate that the glass sand backfill exhibits remarkable AE detection characteristics and stronger correlation results. Significantly, AE signal exhibits variational dominant frequencies at different deformation stages, and there is the significant phenomenon that not only the low frequency signals generated with a significantly increase number, at the same time the continuous high frequency signals appear during the accelerating deformation stage. Furthermore, from the statistical trend of the energy percentage of the high frequency band into 312.5~500 kHz, it’s found that the correlative energy proportion occupies up to 15%, or even higher during the accelerating stage, indicating that the landslide may be about to enter a severely dangerous stage. The experiments show that the frequency characteristic of the AE signal can be effectively used as the early warning index, which may be the promising reference of the field warning monitoring for the soil progressive landslides.</p>


2021 ◽  
Author(s):  
Pritam Ghosh ◽  
Kathakali Bhattacharyya

<p>We examine how the deformation profile and kinematic evolutionary paths of two major shear zones with prolonged deformation history and large translations differ with varying structural positions along its transport direction in an orogenic wedge. We conduct this analysis on multiple exposures of the internal thrusts from the Sikkim Himalayan fold thrust belt, the Pelling-Munsiari thrust (PT), the roof thrust of the Lesser Himalayan duplex (LHD), and the overlying Main Central thrust (MCT). These two thrusts are regionally folded due to growth of the LHD and are exposed at different structural positions. The hinterlandmost exposures of the MCT and PT zones lie in the trailing parts of the duplex, while the foreland-most exposures of the same studied shear zones lie in the leading part of the duplex, and thus have recorded a greater connectivity with the duplex. The thicknesses of the shear zones progressively decrease toward the leading edge indicating variation in deformation conditions. Thickness-displacement plot reveals strain-softening from all the five studied MCT and the PT mylonite zones. However, the strain-softening mechanisms varied along its transport direction with the hinterland exposures recording dominantly dislocation-creep, while dissolution-creep and reaction-softening are dominant in the forelandmost exposures. Based on overburden estimation, the loss of overburden on the MCT and the PT zones is more in the leading edge (~26km and ~15km, respectively) than in the trailing edge (~10km and ~17km, respectively), during progressive deformation. Based on recalibrated recrystallized quartz grain thermometer (Law, 2014), the estimated deformation temperatures in the trailing edge are higher (~450-650°C) than in the leading edge (350-550°C) of the shear zones. This variation in the deformation conditions is also reflected in the shallow-crustal deformation structures with higher fracture intensity and lower spacing in the leading edge exposures of the shear zones as compared to the trailing edge exposures.</p><p>The proportion of mylonitic domains and micaceous minerals within the exposed shear zones increase and grain-size of the constituent minerals decreases progressively along the transport direction. This is also consistent with progressive increase in mean R<sub>s</sub>-values toward leading edge exposures of the same shear zones. Additionally, the α-value (stretch ratio) gradually increases toward the foreland-most exposures along with increasing angular shear strain. Vorticity estimates from multiple incremental strain markers indicate that the MCT and PT zones generally record a decelerating strain path. Therefore, the results from this study are counterintuitive to the general observation of a direct relationship between higher Rs-value and higher pure-shear component. We explain this observation in the context of the larger kinematics of the orogen, where the leading edge exposures have passed through the duplex structure, recording the greatest connectivity and most complete deformation history, resulting in the weakest shear zone that is also reflected in the deformation profiles and strain attributes. This study demonstrates that the same shear zone records varying deformation profile, strain and kinematic evolutionary paths due to varying deformation conditions and varying connectivity to the underlying footwall structures during progressive deformation of an orogenic wedge.</p>


2021 ◽  
Author(s):  
Hatice Ünal Ercan ◽  
Ömer Işık Ece ◽  
Paul A. Schroeder ◽  
Fatma Gülmez

<p>There are many well-known geothermal systems linked to magmatic activity on Earth, many of which eventually express a surface manifestation of the below ground magmatism. The Oligo-Miocene was a period of very active magmatism that took place in Western Anatolia, where granitoidic plutons were emplaced within crust while calcalkaline to alkaline lavas and associated pyroclastics produced by volcanoes under the control of extensional tectonism. Progressive deformation of the crust due to the extension resulted since that time resulting in the development of a E/NE-W/SW trending fault system and of fracture zones that run perpendicular to main faults.</p><p>The mineralogical composition of the Hamamtepe and Muratdağı silica sinter deposits is comprised of kaolinite, alunite, and quartz. Microlithofacies of these deposits were defined as, i) massive, ii) laminated, iii) breccia, and iv) porous. δ<sup>18</sup>O stable isotope analysis on silicified rocks and δ<sup>34</sup>S with <sup>40</sup>Ar/<sup>39</sup>Ar radiometric age analysis on alunite minerals were performed with the aim of constraining the origin and timing of the silica deposits. We obtained results from δ<sup>18</sup>O ranging from 12.3 to 18.4 ‰, δ<sup>34</sup>S ranging from 9.2 and 16.6 ‰, and radiometric age analysis, which all suggest that the silica sinter deposits formed in a steam heated, low pH, oxidizing epithermal environments., coeval with prominent volcanic activity in the region.</p>


Solid Earth ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 141-170
Author(s):  
Kathryn E. Elphick ◽  
Craig R. Sloss ◽  
Klaus Regenauer-Lieb ◽  
Christoph E. Schrank

Abstract. We analyse deformation bands related to horizontal contraction with an intermittent period of horizontal extension in Miocene turbidites of the Whakataki Formation south of Castlepoint, Wairarapa, North Island, New Zealand. In the Whakataki Formation, three sets of cataclastic deformation bands are identified: (1) normal-sense compactional shear bands (CSBs), (2) reverse-sense CSBs, and (3) reverse-sense shear-enhanced compaction bands (SECBs). During extension, CSBs are associated with normal faults. When propagating through clay-rich interbeds, extensional bands are characterised by clay smear and grain size reduction. During contraction, sandstone-dominated sequences host SECBs, and rare CSBs, that are generally distributed in pervasive patterns. A quantitative spacing analysis shows that most outcrops are characterised by mixed spatial distributions of deformation bands, interpreted as a consequence of overprint due to progressive deformation or distinct multiple generations of deformation bands from different deformation phases. As many deformation bands are parallel to adjacent juvenile normal faults and reverse faults, bands are likely precursors to faults. With progressive deformation, the linkage of distributed deformation bands across sedimentary beds occurs to form through-going faults. During this process, bands associated with the wall-, tip-, and interaction-damage zones overprint earlier distributions resulting in complex spatial patterns. Regularly spaced bands are pervasively distributed when far away from faults. Microstructural analysis shows that all deformation bands form by inelastic pore collapse and grain crushing with an absolute reduction in porosity relative to the host rock between 5 % and 14 %. Hence, deformation bands likely act as fluid flow barriers. Faults and their associated damage zones exhibit a spacing of 9 m on the scale of 10 km and are more commonly observed in areas characterised by higher mudstone-to-sandstone ratios. As a result, extensive clay smear is common in these faults, enhancing the sealing capacity of faults. Therefore, the formation of deformation bands and faults leads to progressive flow compartmentalisation from the scale of 9 m down to about 10 cm – the typical spacing of distributed, regularly spaced deformation bands.


Sign in / Sign up

Export Citation Format

Share Document