SMI-A New Way of Doing High-Resolution Seismic Inversion

2017 ◽  
Author(s):  
Bi Jianjun ◽  
Huang Junbin
Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. R185-R195 ◽  
Author(s):  
Daniel O. Pérez ◽  
Danilo R. Velis ◽  
Mauricio D. Sacchi

A new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkage-thresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the [Formula: see text]-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for [Formula: see text]-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain high-resolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 203 ◽  
Author(s):  
Kamil Cichostępski ◽  
Jerzy Dec ◽  
Anna Kwietniak

In this article, we present a high-resolution shallow seismic surveying method for imaging the inner structure of the Miocene evaporitic formation, where sulfur ore occurs. The survey was completed in the northern part of the Carpathian Foredeep (SE Poland) where sulfur deposits occur up to a depth of ca. 260 m. In this region, the sulfur ore is strata-bound and exists within a carbonate interval of a thickness of approximately 28 m. The average sulfur content reaches up to 30%. Five seismic profiles were acquired with a total length of 2450 m. The acquisition was designed to obtain high-resolution, long offsets and a satisfactory signal-to-noise ratio. In the field, we used 48 channels and variable end-on roll-along spread that allowed us to record offsets of up to 375 m. Data processing was aimed at preserving relative amplitudes (known as RAP, relative amplitude preservation processing), an approach that is necessary for seismic inversion application. With the utilization of well log data and results of simultaneous inversion, we were able to calculate the elastic properties of the deposit to evaluate sulfur ore content and changes in lithology. The sulfur content is strongly dependent on the carbonate reservoir’s porosity. To evaluate porosity changes and associated sulfur content, a simultaneous inversion procedure was used. This is a pioneering approach in which we applied pre-stack inversion methods to shallow carbonate sediments.


2014 ◽  
Vol 2 (3) ◽  
pp. T143-T153 ◽  
Author(s):  
Tatiane M. Nascimento ◽  
Paulo T. L. Menezes ◽  
Igor L. Braga

Seismic inversion is routinely used to determine rock properties, such as acoustic impedance and porosity, from seismic data. Nonuniqueness of the solutions is a major issue. A good strategy to reduce this inherent ambiguity of the inversion procedure is to introduce stratigraphic and structural information a priori to better construct the low-frequency background model. This is particularly relevant when studying heterogeneous deepwater turbidite reservoirs that form prolific, but complex, hydrocarbon plays in the Brazilian offshore basins. We evaluated a high-resolution inversion workflow applied to 3D seismic data at Marlim Field, Campos Basin, to recover acoustic impedance and porosity of the turbidites reservoirs. The Marlim sandstones consist of an Oligocene/Miocene deepwater turbidite system forming a series of amalgamated bodies. The main advantage of our workflow is to incorporate the interpreter’s knowledge about the local stratigraphy to construct an enhanced background model, and then extract a higher resolution image from the seismic data. High-porosity zones were associated to the reservoirs facies; meanwhile, the nonreservoir facies were identified as low-porosity zones.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. M73-M87 ◽  
Author(s):  
Alvaro Rey ◽  
Eric Bhark ◽  
Kai Gao ◽  
Akhil Datta-Gupta ◽  
Richard Gibson

We have developed an efficient approach of petroleum reservoir model calibration that integrates 4D seismic surveys together with well-production data. The approach is particularly well-suited for the calibration of high-resolution reservoir properties (permeability) because the field-scale seismic data are areally dense, whereas the production data are effectively averaged over interwell spacing. The joint calibration procedure is performed using streamline-based sensitivities derived from finite-difference flow simulation. The inverted seismic data (i.e., changes in elastic impedance or fluid saturations) are distributed as a 3D high-resolution grid cell property. The sensitivities of the seismic and production surveillance data to perturbations in absolute permeability at individual grid cells are efficiently computed via semianalytical streamline techniques. We generalize previous formulations of streamline-based seismic inversion to incorporate realistic field situations such as changing boundary conditions due to infill drilling, pattern conversion, etc. A commercial finite-difference flow simulator is used for reservoir simulation and to generate the time-dependent velocity fields through which streamlines are traced and the sensitivity coefficients are computed. The commercial simulator allows us to incorporate detailed physical processes including compressibility and nonconvective forces, e.g., capillary pressure effects, while the streamline trajectories provide a rapid evaluation of the sensitivities. The efficacy of our proposed approach was tested with synthetic and field applications. The synthetic example was the Society of Petroleum Engineers benchmark Brugge field case. The field example involves waterflooding of a North Sea reservoir with multiple seismic surveys. In both cases, the advantages of incorporating the time-lapse variations were clearly demonstrated through improved estimation of the permeability heterogeneity, fluid saturation evolution, and swept and drained volumes. The value of the seismic data integration was in particular proven through the identification of the continuity in reservoir sands and barriers, and by the preservation of geologic realism in the calibrated model.


Author(s):  
Guangtan Huang ◽  
Xiaohong Chen ◽  
Jingye Li ◽  
Omar M. Saad ◽  
Sergey Fomel ◽  
...  

2019 ◽  
Vol 7 (3) ◽  
pp. SE215-SE224 ◽  
Author(s):  
Son Dang Thai Phan ◽  
Mrinal K. Sen

Seismic inversion is one popular approach that aims at predicting some indicative properties to support the geologic interpretation process. Existing inversion techniques indicate weaknesses when dealing with complex geologic area, where the uncertainties arise from the guiding model, which are provided by the interpreters. We have developed a prestack seismic inversion algorithm using a machine-learning algorithm called the Boltzmann machine. Unlike common inversion approaches, this stochastic neural network does not require a starting model at the beginning of the process to guide the solution; however, low-frequency models are required to convert the inversion-derived reflectivity terms to the absolute elastic P- and S-impedance as well as density. Our algorithm incorporates a single-layer Hopfield neural network whose neurons can be treated as the desired reflectivity terms. The optimization process seeks the global minimum solution by combining the network with a stochastic model update from the mean-field annealing algorithm. Also, we use a Z-shaped sample sorting scheme and the first-order Tikhonov regularization to improve the lateral continuity of the results and to stabilize the inversion process. The algorithm is applied to a field 2D data set to invert for high-resolution indicative P- and S-impedance sections to better capture some features away from the reservoir zone. The resulting models are strongly supported by the well results and reveal some realistic features that are not clearly displayed in the model-based deterministic inversion result. In combination with well-log analyses, the new features appear to be a good prospect for hydrocarbon.


Sign in / Sign up

Export Citation Format

Share Document