Sensitivity Kernel of Double Plane Wave Full Waveform Inversion

2018 ◽  
Author(s):  
Zeyu Zhao
Author(s):  
Kai Wang ◽  
Yi Wang ◽  
Xin Song ◽  
Ping Tong ◽  
Qinya Liu ◽  
...  

ABSTRACT Teleseismic full-waveform inversion has recently been applied to image subwavelength-scale lithospheric structures (typically a few tens of kilometers) by utilizing hybrid methods in which an efficient solver for the 1D background model is coupled with a full numerical solver for a small 3D target region. Among these hybrid methods, the coupling of the frequency–wavenumber technique with the spectral element method is one of the most computationally efficient ones. However, it is normally based on a single plane-wave incidence, and thus cannot synthesize secondary global phases generated at interfaces outside the target area. To remedy the situation, we propose to use a multiple plane-wave injection method to include secondary global phases in the hybrid modeling. We investigate the performance of the teleseismic full-waveform inversion based on single and multiple plane-wave incidence through an application in the western Pyrenees and compare it with previously published images and the inversion based on a global hybrid method. In addition, we also test the influence of Earth’s spherical curvature on the tomographic results. Our results demonstrate that the teleseismic full-waveform inversion based on a single plane-wave incidence can reveal complex lithospheric structures similar to those imaged using a global hybrid method and is reliable for practical tomography for small regions with an aperture of a few hundred kilometers. However, neglecting the Earth’s spherical curvature and secondary phases leads to errors on the recovered amplitudes of velocity anomalies (e.g., about 2.8% difference for density and VS, and 4.2% for VP on average). These errors can be reduced by adopting a spherical mesh and injecting multiple plane waves in the frequency–wavenumber-based hybrid method. The proposed plane-wave teleseismic full-waveform inversion is promising for mapping subwavelength-scale seismic structures using high-frequency teleseismic body waves (>1  Hz) including coda waves recorded at large N seismic arrays.


2018 ◽  
Vol 123 (2) ◽  
pp. 1486-1501 ◽  
Author(s):  
Gang Yao ◽  
Nuno V. da Silva ◽  
Michael Warner ◽  
Tatiana Kalinicheva

Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. R13-R23 ◽  
Author(s):  
Yi Tao ◽  
Mrinal K. Sen

We derived an efficient frequency-domain full waveform inversion (FWI) method using plane-wave encoded shot records. The forward modeling involved application of position dependent linear time shifts at all source locations. This was followed by propagation of wavefields into the medium from all shotpoints simultaneously. The gradient of the cost function needed in the FWI was calculated first by transforming the densely sampled seismic data into the frequency-ray parameter domain and then backpropagating the residual wavefield using an adjoint-state approach. We used a Gauss-Newton framework for model updating. The approximate Hessian matrix was formed with a plane-wave encoding strategy, which required a summation over source and receiver ray parameters of the Green’s functions. Plane-wave encoding considerably reduces the computational burden and crosstalk artifacts are effectively suppressed by stacking over different ray parameters. It also has the advantage of directional illumination of the selected targets. Numerical examples show the accuracy and efficiency of our method.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. R385-R397 ◽  
Author(s):  
Christian Boehm ◽  
Mauricio Hanzich ◽  
Josep de la Puente ◽  
Andreas Fichtner

Adjoint methods are a key ingredient of gradient-based full-waveform inversion schemes. While being conceptually elegant, they face the challenge of massive memory requirements caused by the opposite time directions of forward and adjoint simulations and the necessity to access both wavefields simultaneously for the computation of the sensitivity kernel. To overcome this bottleneck, we have developed lossy compression techniques that significantly reduce the memory requirements with only a small computational overhead. Our approach is tailored to adjoint methods and uses the fact that the computation of a sufficiently accurate sensitivity kernel does not require the fully resolved forward wavefield. The collection of methods comprises reinterpolation with a coarse temporal grid as well as adaptively chosen polynomial degree and floating-point precision to represent spatial snapshots of the forward wavefield on hierarchical grids. Furthermore, the first arrivals of adjoint waves are used to identify “shadow zones” that do not contribute to the sensitivity kernel. Numerical experiments show the high potential of this approach achieving an effective compression factor of three orders of magnitude with only a minor reduction in the rate of convergence. Moreover, it is computationally cheap and straightforward to integrate in finite-element wave propagation codes with possible extensions to finite-difference methods.


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 540-553 ◽  
Author(s):  
Susan E. Minkoff ◽  
William W. Symes

Full waveform inversion of a p‐τ marine data set from the Gulf of Mexico provides estimates of the long‐wavelength P‐wave background velocity, anisotropic seismic source, and three high‐frequency elastic parameter reflectivities that explain 70% of the total seismic data and 90% of the data in an interval around the gas sand target. The forward simulator is based on a plane‐wave viscoelastic model for P‐wave propagation and primary reflections in a layered earth. Differential semblance optimization, a variant of output least‐squares inversion, successfully estimates the nonlinear P‐wave background velocity and linear reflectivities. Once an accurate velocity is estimated, output least‐squares inversion reestimates the reflectivities and an anisotropic seismic source simultaneously. The viscoelastic model predicts the amplitude‐versus‐angle trend in the data more accurately than does an elastic model. Simultaneous inversion for reflectivities and source explains substantially more of the actual data than does inversion for reflectivities with fixed source from an air‐gun modeler. The best reflectivity estimates conform to widely accepted lithologic relationships and closely match the filtered well logs.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE135-VE144 ◽  
Author(s):  
Denes Vigh ◽  
E. William Starr

Prestack depth migration has been used for decades to derive velocity distributions in depth. Numerous tools and methodologies have been developed to reach this goal. Exploration in geologically more complex areas exceeds the abilities of existing methods. New data-acquisition and data-processing methods are required to answer these new challenges effectively. The recently introduced wide-azimuth data acquisition method offers better illumination and noise attenuation as well as an opportunity to more accurately determine velocities for imaging. One of the most advanced tools for depth imaging is full-waveform inversion. Prestack seismic full-waveform inversion is very challenging because of the nonlinearity and nonuniqueness of the solution. Combined with multiple iterations of forward modeling and residual wavefield back propagation, the method is computer intensive, especially for 3D projects. We studied a time-domain, plane-wave implementation of 3D waveform inversion. We found that plane-wave gathers are an attractive input to waveform inversion with dramatically reduced computer run times compared to traditional shot-gather approaches. The study was conducted on two synthetic data sets — Marmousi2 and SMAART Pluto 1.5 — and a field data set. The results showed that a velocity field can be reconstructed well using a multiscale time-domain implementation of waveform inversion. Although the time-domain solution does not take advantage of wavenumber redundancy, the method is feasible on current computer architectures for 3D surveys. The inverted velocity volume produces a quality image for exploration geologists by using numerous iterations of waveform inversion.


2019 ◽  
Vol 170 ◽  
pp. 103826
Author(s):  
Taekhyun Kwon ◽  
Joongmoo Byun ◽  
Byoung Yeop Kim ◽  
Sik Huh

Sign in / Sign up

Export Citation Format

Share Document