Full waveform inversion of marine reflection data in the plane‐wave domain

Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 540-553 ◽  
Author(s):  
Susan E. Minkoff ◽  
William W. Symes

Full waveform inversion of a p‐τ marine data set from the Gulf of Mexico provides estimates of the long‐wavelength P‐wave background velocity, anisotropic seismic source, and three high‐frequency elastic parameter reflectivities that explain 70% of the total seismic data and 90% of the data in an interval around the gas sand target. The forward simulator is based on a plane‐wave viscoelastic model for P‐wave propagation and primary reflections in a layered earth. Differential semblance optimization, a variant of output least‐squares inversion, successfully estimates the nonlinear P‐wave background velocity and linear reflectivities. Once an accurate velocity is estimated, output least‐squares inversion reestimates the reflectivities and an anisotropic seismic source simultaneously. The viscoelastic model predicts the amplitude‐versus‐angle trend in the data more accurately than does an elastic model. Simultaneous inversion for reflectivities and source explains substantially more of the actual data than does inversion for reflectivities with fixed source from an air‐gun modeler. The best reflectivity estimates conform to widely accepted lithologic relationships and closely match the filtered well logs.

Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R271-R293 ◽  
Author(s):  
Nuno V. da Silva ◽  
Gang Yao ◽  
Michael Warner

Full-waveform inversion deals with estimating physical properties of the earth’s subsurface by matching simulated to recorded seismic data. Intrinsic attenuation in the medium leads to the dispersion of propagating waves and the absorption of energy — media with this type of rheology are not perfectly elastic. Accounting for that effect is necessary to simulate wave propagation in realistic geologic media, leading to the need to estimate intrinsic attenuation from the seismic data. That increases the complexity of the constitutive laws leading to additional issues related to the ill-posed nature of the inverse problem. In particular, the joint estimation of several physical properties increases the null space of the parameter space, leading to a larger domain of ambiguity and increasing the number of different models that can equally well explain the data. We have evaluated a method for the joint inversion of velocity and intrinsic attenuation using semiglobal inversion; this combines quantum particle-swarm optimization for the estimation of the intrinsic attenuation with nested gradient-descent iterations for the estimation of the P-wave velocity. This approach takes advantage of the fact that some physical properties, and in particular the intrinsic attenuation, can be represented using a reduced basis, substantially decreasing the dimension of the search space. We determine the feasibility of the method and its robustness to ambiguity with 2D synthetic examples. The 3D inversion of a field data set for a geologic medium with transversely isotropic anisotropy in velocity indicates the feasibility of the method for inverting large-scale real seismic data and improving the data fitting. The principal benefits of the semiglobal multiparameter inversion are the recovery of the intrinsic attenuation from the data and the recovery of the true undispersed infinite-frequency P-wave velocity, while mitigating ambiguity between the estimated parameters.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE135-VE144 ◽  
Author(s):  
Denes Vigh ◽  
E. William Starr

Prestack depth migration has been used for decades to derive velocity distributions in depth. Numerous tools and methodologies have been developed to reach this goal. Exploration in geologically more complex areas exceeds the abilities of existing methods. New data-acquisition and data-processing methods are required to answer these new challenges effectively. The recently introduced wide-azimuth data acquisition method offers better illumination and noise attenuation as well as an opportunity to more accurately determine velocities for imaging. One of the most advanced tools for depth imaging is full-waveform inversion. Prestack seismic full-waveform inversion is very challenging because of the nonlinearity and nonuniqueness of the solution. Combined with multiple iterations of forward modeling and residual wavefield back propagation, the method is computer intensive, especially for 3D projects. We studied a time-domain, plane-wave implementation of 3D waveform inversion. We found that plane-wave gathers are an attractive input to waveform inversion with dramatically reduced computer run times compared to traditional shot-gather approaches. The study was conducted on two synthetic data sets — Marmousi2 and SMAART Pluto 1.5 — and a field data set. The results showed that a velocity field can be reconstructed well using a multiscale time-domain implementation of waveform inversion. Although the time-domain solution does not take advantage of wavenumber redundancy, the method is feasible on current computer architectures for 3D surveys. The inverted velocity volume produces a quality image for exploration geologists by using numerous iterations of waveform inversion.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R257-R271 ◽  
Author(s):  
Òscar Calderón Agudo ◽  
Nuno Vieira da Silva ◽  
Michael Warner ◽  
Joanna Morgan

Full-waveform inversion (FWI) is a technique used to obtain high-quality velocity models of the subsurface. Despite the elastic nature of the earth, the anisotropic acoustic wave equation is typically used to model wave propagation in FWI. In part, this simplification is essential for being efficient when inverting large 3D data sets, but it has the adverse effect of reducing the accuracy and resolution of the recovered P-wave velocity models, as well as a loss in potential to constrain other physical properties, such as the S-wave velocity given that amplitude information in the observed data set is not fully used. Here, we first apply conventional acoustic FWI to acoustic and elastic data generated using the same velocity model to investigate the effect of neglecting the elastic component in field data and we find that it leads to a loss in resolution and accuracy in the recovered velocity model. Then, we develop a method to mitigate elastic effects in acoustic FWI using matching filters that transform elastic data into acoustic data and find that it is applicable to marine and land data sets. Tests show that our approach is successful: The imprint of elastic effects on the recovered P-wave models is mitigated, leading to better-resolved models than those obtained after conventional acoustic FWI. Our method requires a guess of [Formula: see text] and is marginally more computationally demanding than acoustic FWI, but much less so than elastic FWI.


2014 ◽  
Author(s):  
Mamoru Takanashi ◽  
Ayato Kato ◽  
Junzo Kasahara ◽  
Stefan Luth ◽  
Christopher Juhlin

Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. U25-U38 ◽  
Author(s):  
Nuno V. da Silva ◽  
Andrew Ratcliffe ◽  
Vetle Vinje ◽  
Graham Conroy

Parameterization lies at the center of anisotropic full-waveform inversion (FWI) with multiparameter updates. This is because FWI aims to update the long and short wavelengths of the perturbations. Thus, it is important that the parameterization accommodates this. Recently, there has been an intensive effort to determine the optimal parameterization, centering the fundamental discussion mainly on the analysis of radiation patterns for each one of these parameterizations, and aiming to determine which is best suited for multiparameter inversion. We have developed a new parameterization in the scope of FWI, based on the concept of kinematically equivalent media, as originally proposed in other areas of seismic data analysis. Our analysis is also based on radiation patterns, as well as the relation between the perturbation of this set of parameters and perturbation in traveltime. The radiation pattern reveals that this parameterization combines some of the characteristics of parameterizations with one velocity and two Thomsen’s parameters and parameterizations using two velocities and one Thomsen’s parameter. The study of perturbation of traveltime with perturbation of model parameters shows that the new parameterization is less ambiguous when relating these quantities in comparison with other more commonly used parameterizations. We have concluded that our new parameterization is well-suited for inverting diving waves, which are of paramount importance to carry out practical FWI successfully. We have demonstrated that the new parameterization produces good inversion results with synthetic and real data examples. In the latter case of the real data example from the Central North Sea, the inverted models show good agreement with the geologic structures, leading to an improvement of the seismic image and flatness of the common image gathers.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R1-R10 ◽  
Author(s):  
Zhendong Zhang ◽  
Tariq Alkhalifah ◽  
Zedong Wu ◽  
Yike Liu ◽  
Bin He ◽  
...  

Full-waveform inversion (FWI) is an attractive technique due to its ability to build high-resolution velocity models. Conventional amplitude-matching FWI approaches remain challenging because the simplified computational physics used does not fully represent all wave phenomena in the earth. Because the earth is attenuating, a sample-by-sample fitting of the amplitude may not be feasible in practice. We have developed a normalized nonzero-lag crosscorrelataion-based elastic FWI algorithm to maximize the similarity of the calculated and observed data. We use the first-order elastic-wave equation to simulate the propagation of seismic waves in the earth. Our proposed objective function emphasizes the matching of the phases of the events in the calculated and observed data, and thus, it is more immune to inaccuracies in the initial model and the difference between the true and modeled physics. The normalization term can compensate the energy loss in the far offsets because of geometric spreading and avoid a bias in estimation toward extreme values in the observed data. We develop a polynomial-type weighting function and evaluate an approach to determine the optimal time lag. We use a synthetic elastic Marmousi model and the BigSky field data set to verify the effectiveness of the proposed method. To suppress the short-wavelength artifacts in the estimated S-wave velocity and noise in the field data, we apply a Laplacian regularization and a total variation constraint on the synthetic and field data examples, respectively.


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R793-R804 ◽  
Author(s):  
Debanjan Datta ◽  
Mrinal K. Sen ◽  
Faqi Liu ◽  
Scott Morton

A good starting model is imperative in full-waveform inversion (FWI) because it solves a least-squares inversion problem using a local gradient-based optimization method. A suboptimal starting model can result in cycle skipping leading to poor convergence and incorrect estimation of subsurface properties. This problem is especially crucial for salt models because the strong velocity contrasts create substantial time shifts in the modeled seismogram. Incorrect estimation of salt bodies leads to velocity inaccuracies in the sediments because the least-squares gradient aims to reduce traveltime differences without considering the sharp velocity jump between sediments and salt. We have developed a technique to estimate velocity models containing salt bodies using a combination of global and local optimization techniques. To stabilize the global optimization algorithm and keep it computationally tractable, we reduce the number of model parameters by using sparse parameterization formulations. The sparse formulation represents sediments using a set of interfaces and velocities across them, whereas a set of ellipses represents the salt body. We use very fast simulated annealing (VFSA) to minimize the misfit between the observed and synthetic data and estimate an optimal model in the sparsely parameterized space. The VFSA inverted model is then used as a starting model in FWI in which the sediments and salt body are updated in the least-squares sense. We partition model updates into sediment and salt updates in which the sediments are updated like conventional FWI, whereas the shape of the salt is updated by taking the zero crossing of an evolving level set surface. Our algorithm is tested on two 2D synthetic salt models, namely, the Sigsbee 2A model and a modified SEG Advanced Modeling Program (SEAM) Phase I model while fixing the top of the salt. We determine the efficiency of the VFSA inversion and imaging improvements from the level set FWI approach and evaluate a few sources of uncertainty in the estimation of salt shapes.


Sign in / Sign up

Export Citation Format

Share Document