Full-Waveform Inversion of High-Frequency Teleseismic Body Waves Based on Multiple Plane-Wave Incidence: Methods and Practical Applications

Author(s):  
Kai Wang ◽  
Yi Wang ◽  
Xin Song ◽  
Ping Tong ◽  
Qinya Liu ◽  
...  

ABSTRACT Teleseismic full-waveform inversion has recently been applied to image subwavelength-scale lithospheric structures (typically a few tens of kilometers) by utilizing hybrid methods in which an efficient solver for the 1D background model is coupled with a full numerical solver for a small 3D target region. Among these hybrid methods, the coupling of the frequency–wavenumber technique with the spectral element method is one of the most computationally efficient ones. However, it is normally based on a single plane-wave incidence, and thus cannot synthesize secondary global phases generated at interfaces outside the target area. To remedy the situation, we propose to use a multiple plane-wave injection method to include secondary global phases in the hybrid modeling. We investigate the performance of the teleseismic full-waveform inversion based on single and multiple plane-wave incidence through an application in the western Pyrenees and compare it with previously published images and the inversion based on a global hybrid method. In addition, we also test the influence of Earth’s spherical curvature on the tomographic results. Our results demonstrate that the teleseismic full-waveform inversion based on a single plane-wave incidence can reveal complex lithospheric structures similar to those imaged using a global hybrid method and is reliable for practical tomography for small regions with an aperture of a few hundred kilometers. However, neglecting the Earth’s spherical curvature and secondary phases leads to errors on the recovered amplitudes of velocity anomalies (e.g., about 2.8% difference for density and VS, and 4.2% for VP on average). These errors can be reduced by adopting a spherical mesh and injecting multiple plane waves in the frequency–wavenumber-based hybrid method. The proposed plane-wave teleseismic full-waveform inversion is promising for mapping subwavelength-scale seismic structures using high-frequency teleseismic body waves (>1  Hz) including coda waves recorded at large N seismic arrays.

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2916 ◽  
Author(s):  
Jingwei Zhang ◽  
Shengbo Ye ◽  
Li Yi ◽  
Yuquan Lin ◽  
Hai Liu ◽  
...  

Ground penetrating radar (GPR), as a nondestructive testing tool, is suitable for estimating the thickness and permittivity of layers within the pavement. However, it would become problematic when the layer is thin with respect to the probing pulse width, in which case overlapping between the reflected pulses occurs. In order to deal with this problem, a hybrid method based on multilayer perceptrons (MLPs) and a local optimization algorithm is proposed. This method can be divided into two stages. In the first stage, the MLPs roughly estimate the thickness and the permittivity of the GPR signal. In the second stage, these roughly estimated values are used as the initial solution of the full-waveform inversion algorithm. The hybrid method and the conventional global optimization algorithm are respectively used to perform the full-waveform inversion of the simulated GPR data. Under the same inversion precision, the objective function needs to be calculated for 450 times and 30 times for the conventional method and the hybrid method, respectively. The hybrid method is also applied to a measured data, and the thickness estimation error is 1.2 mm. The results show the high efficiency and accuracy of such hybrid method to resolve the problem of estimating the thickness and permittivity of a “thin layer”.


2019 ◽  
Vol 219 (3) ◽  
pp. 1970-1988 ◽  
Author(s):  
Weiguang He ◽  
Romain Brossier ◽  
Ludovic Métivier ◽  
René-Édouard Plessix

SUMMARY Land seismic multiparameter full waveform inversion in anisotropic media is challenging because of high medium contrasts and surface waves. With a data-residual least-squares objective function, the surface wave energy usually masks the body waves and the gradient of the objective function exhibits high values in the very shallow depths preventing from recovering the deeper part of the earth model parameters. The optimal transport objective function, coupled with a Gaussian time-windowing strategy, allows to overcome this issue by more focusing on phase shifts and by balancing the contributions of the different events in the adjoint-source and the gradients. We first illustrate the advantages of the optimal transport function with respect to the least-squares one, with two realistic examples. We then discuss a vertical transverse isotropic (VTI) example starting from a quasi 1-D isotropic initial model. Despite some cycle-skipping issues in the initial model, the inversion based on the windowed optimal transport approach converges. Both the near-surface complexities and the variations at depth are recovered.


2018 ◽  
Vol 123 (2) ◽  
pp. 1486-1501 ◽  
Author(s):  
Gang Yao ◽  
Nuno V. da Silva ◽  
Michael Warner ◽  
Tatiana Kalinicheva

Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. R13-R23 ◽  
Author(s):  
Yi Tao ◽  
Mrinal K. Sen

We derived an efficient frequency-domain full waveform inversion (FWI) method using plane-wave encoded shot records. The forward modeling involved application of position dependent linear time shifts at all source locations. This was followed by propagation of wavefields into the medium from all shotpoints simultaneously. The gradient of the cost function needed in the FWI was calculated first by transforming the densely sampled seismic data into the frequency-ray parameter domain and then backpropagating the residual wavefield using an adjoint-state approach. We used a Gauss-Newton framework for model updating. The approximate Hessian matrix was formed with a plane-wave encoding strategy, which required a summation over source and receiver ray parameters of the Green’s functions. Plane-wave encoding considerably reduces the computational burden and crosstalk artifacts are effectively suppressed by stacking over different ray parameters. It also has the advantage of directional illumination of the selected targets. Numerical examples show the accuracy and efficiency of our method.


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 540-553 ◽  
Author(s):  
Susan E. Minkoff ◽  
William W. Symes

Full waveform inversion of a p‐τ marine data set from the Gulf of Mexico provides estimates of the long‐wavelength P‐wave background velocity, anisotropic seismic source, and three high‐frequency elastic parameter reflectivities that explain 70% of the total seismic data and 90% of the data in an interval around the gas sand target. The forward simulator is based on a plane‐wave viscoelastic model for P‐wave propagation and primary reflections in a layered earth. Differential semblance optimization, a variant of output least‐squares inversion, successfully estimates the nonlinear P‐wave background velocity and linear reflectivities. Once an accurate velocity is estimated, output least‐squares inversion reestimates the reflectivities and an anisotropic seismic source simultaneously. The viscoelastic model predicts the amplitude‐versus‐angle trend in the data more accurately than does an elastic model. Simultaneous inversion for reflectivities and source explains substantially more of the actual data than does inversion for reflectivities with fixed source from an air‐gun modeler. The best reflectivity estimates conform to widely accepted lithologic relationships and closely match the filtered well logs.


Sign in / Sign up

Export Citation Format

Share Document