scholarly journals Mapping the depth to magnetic basement using inversion of pseudogravity: Application to the Bishop model and the Stord Basin, northern North Sea

2014 ◽  
Vol 2 (2) ◽  
pp. T69-T78 ◽  
Author(s):  
Ahmed Salem ◽  
Chris Green ◽  
Samuel Cheyney ◽  
J. Derek Fairhead ◽  
Essam Aboud ◽  
...  

Magnetic depth estimation methods are routinely used to map the depth of sedimentary basins by assuming that the sediments are nonmagnetic and underlain by magnetic basement rocks. Most of these methods generate basement depth estimates at discrete points. Converting these depth estimates into a grid or map form often requires the application of qualitative methods. The reason for this is twofold: first, in deeper parts of basins, there is generally a scarcity of depth estimates and those that have been determined tend to be biased toward the shallower basement structures close to the basin edge; and second, depth estimates intrinsically relate to magnetic anomalies that emanate from the top edges of basement faults/contacts resulting in a shallow depth bias. Thus, simple grid interpolation of these depth estimates often forms a shallower and structurally unrepresentative map when evaluated in detail. To overcome these problems of qualitative and/or simple grid interpolation of these point-depth estimates into a regular grid, we use the pseudogravity field transform response of the magnetic field to constrain this interpolation using inversion methods together with the relationship between the point-depth estimates and their pseudogravity values. The pseudogravity transformation converts a grid of magnetic data such that the resulting grid has the same simple relationship to magnetic susceptibility that a gravity grid has to density. The pseudogravity map is thus straightforward to visualize in terms of basement structure, but it only maps the magnetic properties of the subsurface and is not related to the gravity anomaly or the density. We describe a practical approach to invert pseudogravity grids using gravity inversion software to produce a 3D basin model assuming a constant susceptibility basement. The approach is initially tested on the Bishop 3D model and then applied to an example from the northern North Sea. This approach can be considered complementary to 3D gravity inversion and has the advantage that the pseudogravity response is not affected by structure within the sediments or effects such as sediment compaction, inversion, or isostatic compensation, all of which often complicate the gravity response of sedimentary basins.

2021 ◽  
Vol 64 (2) ◽  
Author(s):  
Jefferson Tavares Cruz Oliveira ◽  
José Antonio Barbosa ◽  
David de Castro ◽  
Paulo Correia ◽  
José Ricardo Magalhães ◽  
...  

An investigation of Curie point depths (CPD) based on spectral analysis of airborne magnetic data was carried out in the NE Brazilian continental margin. The studied region represents a narrow hyper-extended margin with three sedimentary basins. Regional geothermal gradient and heat flow were also calculated. CPD results were integrated with interpretation of 2D deep seismic data and with estimated isostatic Moho depths. The results reveal that the narrow hyper-extended crust is 150 km wide in the southern sector and 80 km wide in the north, with a narrow ocean-continental transition (OCT) zone that varies from 50 km wide in the south sector to 30 to 20 km wide in the north. The CPD isotherm showed the strong influence of the three main continental blocks of Borborema ́s Shield in the tectonic evolution of the three marginal basins. The CPD analysis corroborated models provided by gravimetric data and successfully demonstrated the sharp control of basement compartments on the thermal properties of the marginal basins domains


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Abdelhakim S. Eshanibli ◽  
Abel Uyimwen Osagie ◽  
Nur Azwin Ismail ◽  
Hussin B. Ghanush

AbstractIn this study, we analyse both ground gravity and aeromagnetic data in order to delineate structural trends, fault systems and deduce sedimentary thicknesses within the Ajdabiya Trough in Libya’s northeast. A high-pass filter and a reduced-to-the-pole (RTP) transformation are applied to the gravity and aeromagnetic data respectively. Different filters are used to enhance the structural signatures and fault trends within the study area. The Werner deconvolution and source parameter imaging (SPI) techniques are applied to the RTP magnetic data for source depth estimation. Four well-data within the area are used as constraints in the two-dimensional forward modelling process. The results show that the Ajdabiya Trough is characterised by gravity anomaly highs and magnetic anomaly lows. The analysis of gravity data shows predominant Northeast–Southwest structural trends, whereas the analysis of magnetic data shows predominant North–South magnetic lineaments within the Ajdabiya Trough. The Euler deconvolution depth estimates of faults depths range between 1500 and 9500 m. The SPI estimates of the magnetic basement range between 2500 and 11,500 m beneath the study area (deepest beneath the Ajdabiya Trough). Constrained by the well-data, six major layers characterize the four profiles that are taken within the area. One of the profiles shows a high-density intrusion (about 4 km from the surface) within the sedimentary sequence. The intrusion may be the result of the rifting Sirt Basin which caused a weakening of the crust to allow for mantle intrusion.


Geophysics ◽  
2021 ◽  
pp. 1-87
Author(s):  
Y. Kelemework ◽  
M. Fedi ◽  
M. Milano

Spectral analysis has been used for studying a variety of geological structures and processes, such as estimation of the depth to the crystalline basement or of the Curie temperature isotherm from magnetic anomalies. However, the analysis is not standard, as it refers to different theoretical frameworks, such as statistical ensembles of homogeneous sources and uncorrelated or fractal random distributed sources. In this review, we aim to unify the approaches by reformulating all the common spectral expressions in the form of a product between a depth-dependent exponential factor and a factor, which we call the spectral correction factor, that incorporates all of the a priori assumptions for each method. This kind of organization might be useful for practitioners to quickly select the most appropriate method for a given study area. We also establish a new formula for extending the Spector and Grant method to the centroid depth estimation. Practical constraints on the depth estimation and intrinsic assumptions/limitations of the different approaches are examined by generating synthetic data of homogenous ensemble sources, random and fractal models. We address the statistical uncertainty of depth estimates using ordinary error propagation on the spectral slope. Critical parameters, such as the window size, are also analyzed in terms of the type of method used and of the geological complexity. We find that the window size is smaller for the centroid/modified centroid methods and larger for the spectral peak, de-fractal, and nonlinear parameter depth estimation methods. In any case, the window size can be large in tectonically stable regions and relatively small over volcanically, tectonically, and geothermally active areas. We finally estimate and discuss the depth to magnetic top and bottom in the Adriatic Sea region (eastern Italy) in the context of heat flow, Moho depth, and gravity data of the region.


2020 ◽  
Author(s):  
Vahid Teknik ◽  
Hans Thybo ◽  
Irina Artemieva

<p>Maps of depth to magnetic basement and crustal average susceptibility for the Anatolian plateau and adjacent regions are calculated by applying a spectral method to the magnetic data. The first map provides information on the shape of the sedimentary basins and the latter map is used for tracking magmatic arcs and ophiolite belts, which are covered by sediment and/or overprinted by different phases of magmatism and ophiolite emplacement. This is possible because magmatic and ophiolite rocks generally have the highest magnetic susceptibility values, and the huge contrast to sedimentary rocks makes magnetic data very useful.</p><p>The results shows a heterogeneous pattern associated with a mosaic of the many continental blocks, Tethyside sutures, magmatism and former subduction systems in Anatolia. Major basins such as northern part of the Arabian plateau, Black Sea basin, Mediterranean Sea basin and central Anatolian micro-basins are highlighted by very deep magnetic basement. Shallow magnetic basement is generally prominent in eastern Anatolia, and may represent that large amounts of magmatic rocks were emplacement during the convergence and compression of the Arabian plate, whereas a sporadic and asymmetric pattern of sedimentary basins in western Anatolia may have developed in the frame of the extensional regime. The average susceptibility map reveals extension of the Pontide magmatic arc in the north of Anatolia, following the coastline of the Black Sea. The average susceptibility indicates magmatism or ophiolite emplacement around the Kirşehır block. A 400 km long NW–SE elongated average susceptibility anomaly extends from south to NW of the Kirşehır beneath the Quaternary sediments, while the depth to magnetic basement indicate more than 6 km sediments. We speculate that this anomaly indicates a covered magnetic arc or a trapped part of oceanic crust. The westeward extension of the Urima-Dokhtar magmatic arc (UDMA) from the Iranian plateau fades away towards to Central Anatolian plateau. It suggest a geological boundary around the border between Iran and Turkey, which caused different magmatism between the two sides. A near zero magnetic anomaly in the Menderes massif region in the southwest of Turkey indirectly suggests a high geothermal gradient and hydrothermal activity that reduce the susceptibility of the rocks. This observation is in agreement with the crustal thinning and many geothermal fields of the Menderes massif.</p>


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 15
Author(s):  
Filippo Aleotti ◽  
Giulio Zaccaroni ◽  
Luca Bartolomei ◽  
Matteo Poggi ◽  
Fabio Tosi ◽  
...  

Depth perception is paramount for tackling real-world problems, ranging from autonomous driving to consumer applications. For the latter, depth estimation from a single image would represent the most versatile solution since a standard camera is available on almost any handheld device. Nonetheless, two main issues limit the practical deployment of monocular depth estimation methods on such devices: (i) the low reliability when deployed in the wild and (ii) the resources needed to achieve real-time performance, often not compatible with low-power embedded systems. Therefore, in this paper, we deeply investigate all these issues, showing how they are both addressable by adopting appropriate network design and training strategies. Moreover, we also outline how to map the resulting networks on handheld devices to achieve real-time performance. Our thorough evaluation highlights the ability of such fast networks to generalize well to new environments, a crucial feature required to tackle the extremely varied contexts faced in real applications. Indeed, to further support this evidence, we report experimental results concerning real-time, depth-aware augmented reality and image blurring with smartphones in the wild.


1990 ◽  
Vol 50 (1) ◽  
pp. 441-470 ◽  
Author(s):  
R. M. Pegrum ◽  
A. M. Spencer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document