Magmatic arcs, ophiolite belts and sedimentary basins in Anatolia interpreted from magnetic data

Author(s):  
Vahid Teknik ◽  
Hans Thybo ◽  
Irina Artemieva

<p>Maps of depth to magnetic basement and crustal average susceptibility for the Anatolian plateau and adjacent regions are calculated by applying a spectral method to the magnetic data. The first map provides information on the shape of the sedimentary basins and the latter map is used for tracking magmatic arcs and ophiolite belts, which are covered by sediment and/or overprinted by different phases of magmatism and ophiolite emplacement. This is possible because magmatic and ophiolite rocks generally have the highest magnetic susceptibility values, and the huge contrast to sedimentary rocks makes magnetic data very useful.</p><p>The results shows a heterogeneous pattern associated with a mosaic of the many continental blocks, Tethyside sutures, magmatism and former subduction systems in Anatolia. Major basins such as northern part of the Arabian plateau, Black Sea basin, Mediterranean Sea basin and central Anatolian micro-basins are highlighted by very deep magnetic basement. Shallow magnetic basement is generally prominent in eastern Anatolia, and may represent that large amounts of magmatic rocks were emplacement during the convergence and compression of the Arabian plate, whereas a sporadic and asymmetric pattern of sedimentary basins in western Anatolia may have developed in the frame of the extensional regime. The average susceptibility map reveals extension of the Pontide magmatic arc in the north of Anatolia, following the coastline of the Black Sea. The average susceptibility indicates magmatism or ophiolite emplacement around the Kirşehır block. A 400 km long NW–SE elongated average susceptibility anomaly extends from south to NW of the Kirşehır beneath the Quaternary sediments, while the depth to magnetic basement indicate more than 6 km sediments. We speculate that this anomaly indicates a covered magnetic arc or a trapped part of oceanic crust. The westeward extension of the Urima-Dokhtar magmatic arc (UDMA) from the Iranian plateau fades away towards to Central Anatolian plateau. It suggest a geological boundary around the border between Iran and Turkey, which caused different magmatism between the two sides. A near zero magnetic anomaly in the Menderes massif region in the southwest of Turkey indirectly suggests a high geothermal gradient and hydrothermal activity that reduce the susceptibility of the rocks. This observation is in agreement with the crustal thinning and many geothermal fields of the Menderes massif.</p>

2021 ◽  
Author(s):  
Vahid Teknik ◽  
Irina Artemieva ◽  
Hans Thybo

<p>We interpret the paleotectonic evolution and structure in the Tethyan belt by analyzing magnetic data sensitive to the presence of iron-rich minerals in oceanic fragments and mafic intrusions, hidden beneath sedimentary sequences or overprinted by younger tectono-magmatic events. By comparing the depth to magnetic basement (DMB) as a proxy for sedimentary thickness with average crustal magnetic susceptibility (ACMS), we conclude:</p><p> (1) Major ocean and platform basins have DMB >10 km. Trapped ocean relics may be present below Central Anatolian micro-basins with DMB at 6-8 km and high ACSM.  In intra-orogenic basins, we identify magmatic material within the sedimentary cover by significantly smaller DMB than depth to seismic basement.</p><p>(2) Known magmatic arcs (Pontides and Urima-Dokhtar) have high-intensity heterogeneous ACMS. We identify a 450 km-long buried (DMB >6 km) magmatic arc or trapped oceanic crust along the western margin of the Kirşehır massif from a strong ACMS anomaly. Large, partially buried magmatic bodies form the Caucasus LIP at the Transcaucasus and Lesser Caucasus and in NW Iran.</p><p>(3) Terranes of Gondwana affinity in the Arabian plate, S Anatolia and SW Iran have low-intensity homogenous ACMS.</p><p>(4) Local poor correlation between known ophiolites and ACMS anomalies indicate a small volume of presently magnetized material in the Tethyan ophiolites, which we explain by demagnetization during recent magmatism.</p><p>(5) ACMS anomalies are weak at tectonic boundaries and faults. However, the Cyprus subduction zone has a strong magnetic signature which extends ca. 500 km into the Arabian plate.</p>


2014 ◽  
Vol 2 (2) ◽  
pp. T69-T78 ◽  
Author(s):  
Ahmed Salem ◽  
Chris Green ◽  
Samuel Cheyney ◽  
J. Derek Fairhead ◽  
Essam Aboud ◽  
...  

Magnetic depth estimation methods are routinely used to map the depth of sedimentary basins by assuming that the sediments are nonmagnetic and underlain by magnetic basement rocks. Most of these methods generate basement depth estimates at discrete points. Converting these depth estimates into a grid or map form often requires the application of qualitative methods. The reason for this is twofold: first, in deeper parts of basins, there is generally a scarcity of depth estimates and those that have been determined tend to be biased toward the shallower basement structures close to the basin edge; and second, depth estimates intrinsically relate to magnetic anomalies that emanate from the top edges of basement faults/contacts resulting in a shallow depth bias. Thus, simple grid interpolation of these depth estimates often forms a shallower and structurally unrepresentative map when evaluated in detail. To overcome these problems of qualitative and/or simple grid interpolation of these point-depth estimates into a regular grid, we use the pseudogravity field transform response of the magnetic field to constrain this interpolation using inversion methods together with the relationship between the point-depth estimates and their pseudogravity values. The pseudogravity transformation converts a grid of magnetic data such that the resulting grid has the same simple relationship to magnetic susceptibility that a gravity grid has to density. The pseudogravity map is thus straightforward to visualize in terms of basement structure, but it only maps the magnetic properties of the subsurface and is not related to the gravity anomaly or the density. We describe a practical approach to invert pseudogravity grids using gravity inversion software to produce a 3D basin model assuming a constant susceptibility basement. The approach is initially tested on the Bishop 3D model and then applied to an example from the northern North Sea. This approach can be considered complementary to 3D gravity inversion and has the advantage that the pseudogravity response is not affected by structure within the sediments or effects such as sediment compaction, inversion, or isostatic compensation, all of which often complicate the gravity response of sedimentary basins.


Author(s):  
Bernhard Weninger ◽  
Lee Clare

Recent advances in palaeoclimatological and meteorological research, combined with new radiocarbon data from western Anatolia and southeast Europe, lead us to formulate a new hypothesis for the temporal and spatial dispersal of Neolithic lifeways from their core areas of genesis. The new hypothesis, which we term the Abrupt Climate Change (ACC) Neolithization Model, incorporates a number of insights from modern vulnerability theory. We focus here on the Late Neolithic (Anatolian terminology), which is followed in the Balkans by the Early Neolithic (European terminology). From high-resolution 14C-case studies, we infer an initial (very rapid) west-directed movement of early farming communities out of the Central Anatolian Plateau towards the Turkish Aegean littoral. This move is exactly in phase (decadal scale) with the onset of ACC conditions (~6600 cal BC). Upon reaching the Aegean coastline, Neolithic dispersal comes to a halt. It is not until some 500 years later—that is, at the close of cumulative ACC and 8.2 ka cal BP Hudson Bay cold conditions—that there occurs a second abrupt movement of farming communities into Southeast Europe, as far as the Pannonian Basin. The spread of early farming from Anatolia into eastern Central Europe is best explained as Neolithic communities’ mitigation of biophysical and social vulnerability to natural (climate-induced) hazards.


2018 ◽  
Vol 14 (2) ◽  
pp. 15-28
Author(s):  
A A ALABI ◽  
O OLOWOFELA

Airborne magnetic data covering geographical latitudes of 7000‟N to 7030‟N and longitudes of 3 30′E to 4 00′E within Ibadan area were obtained from Nigeria Geology Survey Agency. The data were ana-lyzed to map the sub surface structure and the source parameters were deduced from the quantitative and qualitative interpretation of magnetic data. The upward continuation technique was used to de-emphasize short – wavelength anomaly while the depth to magnetic sources in the area was deter-mined using local wavenumber technique, the analytic signal was also employed to obtain the depths of the magnetic basement. Analysis involving the local wavenumber, upward continuation and appar-ent magnetic susceptibility techniques significantly improves the interpretation of magnetic data in terms of delineating the geological structure, source parameter and magnetic susceptibility within Iba-dan area.. These depth ranges from 0.607km to 2.48km. The apparent susceptibility map at the cut-off wavelength of 50 m ranges from -0.00012 to 0.00079 which agree with the susceptibility value of some rock types; granite gneiss, migmatite biotite gneiss, biotite muscovite granite, hornblende granite, quartz and schists. The result of the local wavenumber suggests variation along the profiles in the surface of magnetic basement across the study area.


KURVATEK ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 25-33
Author(s):  
Fatimah Fatimah

Tulakan Subdistrict, Pacitan Regency, East Java Province. This area is part of the Southern Mountain Zone of East Java, which is the Sunda-Banda magmatic arc of Oligo-Miocene age, where there are alterations and indications of valuable ore minerals. Field magnetic data is taken in an area of 1 x 1 km, with the looping method on the grid trajectory within 200 x 100 m. Then, magnetic data correction and data processing were carried out with Oasis Montaj. From the magnetic anomaly map, the value of high magnetic intensity in the southern part is fresh (intrusive) andesit-dasitic rock as host rock which causes alteration, in the middle has a low magnetic intensity value which is in the direction of the relatively NE-SW river direction, whereas in the north with high intensity is fresh andesite lava. From the image data, it can be seen that the straightness pattern of the geological structure which is dominated by the extensional structure with the direction of NE-SW and E-W is the main trap of epithermal veins carrying ore mineralization mainly Cu, Pb in the study area.


2016 ◽  
Vol 53 (11) ◽  
pp. 1142-1157 ◽  
Author(s):  
Jean-Pierre Brun ◽  
Claudio Faccenna ◽  
Frédéric Gueydan ◽  
Dimitrios Sokoutis ◽  
Mélody Philippon ◽  
...  

Back-arc extension in the Aegean, which was driven by slab rollback since 45 Ma, is described here for the first time in two stages. From Middle Eocene to Middle Miocene, deformation was localized leading to (i) the exhumation of high-pressure metamorphic rocks to crustal depths, (ii) the exhumation of high-temperature metamorphic rocks in core complexes, and (iii) the deposition of sedimentary basins. Since Middle Miocene, extension distributed over the whole Aegean domain controlled the deposition of onshore and offshore Neogene sedimentary basins. We reconstructed this two-stage evolution in 3D and four steps at Aegean scale by using available ages of metamorphic and sedimentary processes, geometry, and kinematics of ductile deformation, paleomagnetic data, and available tomographic models. The restoration model shows that the rate of trench retreat was around 0.6 cm/year during the first 30 My and then accelerated up to 3.2 cm/year during the last 15 My. The sharp transition observed in the mode of extension, localized versus distributed, in Middle Miocene correlates with the acceleration of trench retreat and is likely a consequence of the Hellenic slab tearing documented by mantle tomography. The development of large dextral northeast–southwest strike-slip faults, since Middle Miocene, is illustrated by the 450 km long fault zone, offshore from Myrthes to Ikaria and onshore from Izmir to Balikeshir, in Western Anatolia. Therefore, the interaction between the Hellenic trench retreat and the westward displacement of Anatolia started in Middle Miocene, almost 10 Ma before the propagation of the North Anatolian Fault in the North Aegean.


2021 ◽  
Author(s):  
Alan Aitken ◽  
Lu Li ◽  
Bernd Kulessa ◽  
Thomas Jordan ◽  
Joanne Whittaker ◽  
...  

<p>Subglacial and ice-sheet marginal sedimentary basins have very different physical properties to crystalline bedrock and, therefore, form distinct conditions that influence the flow of ice above. Sedimentary rocks are particularly soft and erodible, and therefore capable of sustaining layers of subglacial till that may deform to facilitate fast ice flow downstream. Furthermore, sedimentary rocks are relatively permeable and thus allow for enhanced fluid flux, with associated impacts on ice-sheet dynamics, including feedbacks with subglacial hydrologic systems and transport of heat to the ice-sheet bed. Despite the importance for ice-sheet dynamics there is, at present, no comprehensive record of sedimentary basins in the Antarctic continent, limiting our capacity to investigate these influences. Here we develop the first version of an Antarctic-wide spatial database of sedimentary basins, their geometries and physical attributes. We emphasise the definition of in-situ and undeformed basins that retain their primary characteristics, including relative weakness and high permeability, and therefore are more likely to influence ice sheet dynamics. We define the likely extents and nature of sedimentary basins, considering a range of geological and geophysical data, including: outcrop observations, gravity and magnetic data, radio-echo sounding data and passive and active-source seismic data. Our interpretation also involves derivative products from these data, including analyses guided by machine learning. The database includes for each basin its defining characteristics in the source datasets, and interpreted information on likely basin age, sedimentary thickness, surface morphology and tectonic type. The database is constructed in ESRI geodatabase format and is suitable for incorporation in multifaceted data-interpretation and modelling procedures. It can be readily updated given new information. We define extensive basins in both East and West Antarctica, including major regions in the Ross and Weddell Sea embayments and the Amundsen Sea region of West Antarctica, and the Wilkes, Aurora and Recovery subglacial basins of East Antarctica. The compilation includes smaller basins within crystalline-bedrock dominated areas such as the Transantarctic Mountains, the Antarctic Peninsula and Dronning Maud Land. The distribution of sedimentary basins reveals the combined influence of the tectonic and glacial history of Antarctica on the current and future configuration of the Antarctic Ice Sheet and highlights areas in which the presence of dynamically-evolving subglacial till layers and the exchange of groundwater and heat with the ice sheet bed  are more likely, contributing to dynamic behaviour of the Antarctic Ice Sheet.  </p>


2020 ◽  
pp. 467-495
Author(s):  
T. Baker ◽  
S. Mckinley ◽  
S. Juras ◽  
Y. Oztas ◽  
J. Hunt ◽  
...  

Abstract The Miocene Kışladağ deposit (~17 Moz), located in western Anatolia, Turkey, is one of the few global examples of Au-only porphyry deposits. It occurs within the West Tethyan magmatic belt that can be divided into Cretaceous, Cu-dominant, subduction-related magmatic arc systems and the more widespread Au-rich Cenozoic magmatic belts. In western Anatolia, Miocene magmatism was postcollisional and was focused in extension-related volcanosedimentary basins that formed in response to slab roll back and a major north-south slab tear. Kışladağ formed within multiple monzonite porphyry stocks and dikes at the contact between Menderes massif metamorphic basement and volcanic rocks of the Beydağı stratovolcano in the Uşak-Güre basin. The mineralized magmatic-hydrothermal system formed rapidly (<400 kyr) between ~14.75 and 14.36 Ma in a shallow (<1 km) volcanic environment. Volcanism continued to at least 14.26 ± 0.09 Ma based on new age data from a latite lava flow at nearby Emiril Tepe. Intrusions 1 and 2 were the earliest (14.73 ± 0.05 and 14.76 ± 0.01 Ma, respectively) and best mineralized phases (average median grades of 0.64 and 0.51 g/t Au, respectively), whereas younger intrusions host progressively less Au (Intrusion 2A: 14.60 ± 0.06 Ma and 0.41 g/t Au; Intrusion 2 NW: 14.45 ± 0.08 Ma and 0.41 g/t Au; Intrusion 3: 14.39 ± 0.06 and 14.36 ± 0.13 Ma and 0.19 g/t Au). A new molybdenite age of 14.60 ± 0.07 Ma is within uncertainty of the previously published molybdenite age (14.49 ± 0.06 Ma), and supports field observations that the bulk of the mineralization formed prior to the emplacement of Intrusion 3. Intrusions 1 and 2 are altered to potassic (biotite-K-feldspar-quartz ± magnetite) and younger but deeper sodic-calcic (feldspar-amphibole-magnetite ± quartz ± carbonate) assemblages, both typically pervasive with disseminated to veinlet-hosted pyrite ± chalcopyrite ± molybdenite and localized quartz-feldspar stockwork veinlets and sodic-calcic breccias. Tourmaline-white mica-quartz-pyrite alteration surrounds the potassic core both within the intrusions and outboard in the volcanic rocks. Tourmaline was most strongly developed on the inner margins of the tourmaline-white mica zone, particularly along the Intrusion 1 volcanic contact where it formed breccias and veins, including Maricunga-style veinlets. Field relationships show that the early magmatic-hydrothermal events were cut by Intrusion 2A, which was then overprinted by Au-bearing argillic (kaolinite-pyrite ± quartz) alteration, followed by Intrusion 3 and late-stage, low-grade to barren argillic and advanced argillic alteration (quartz-pyrite ± alunite ± dickite ± pyrophyllite). Gold deportment changes with each successive hydrothermal event. The early potassic and sodic-calcic alteration controls much of the original Au distribution, with the Au dominantly deposited with feldspar and lesser quartz and pyrite. Tourmaline-white mica and argillic alteration events overprinted and altered the early Au-bearing feldspathic alteration and introduced additional Au that was dominantly associated with pyrite. Analogous Au-only deposits such as Maricunga, Chile, La Colosa, Colombia, and Biely Vrch, Slovakia, are characterized by similar alteration styles and Au deportment. The deportment of Au in these Au-only porphyry deposits differs markedly from that in Au-rich porphyry Cu deposits where Au is typically associated with Cu sulfides.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. J57-J67 ◽  
Author(s):  
Marlon C. Hidalgo-Gato ◽  
Valéria C. F. Barbosa

We have developed a fast 3D regularized magnetic inversion algorithm for depth-to-basement estimation based on an efficient way to compute the total-field anomaly produced by an arbitrary interface separating nonmagnetic sediments from a magnetic basement. We approximate the basement layer by a grid of 3D vertical prisms juxtaposed in the horizontal directions, in which the prisms’ tops represent the depths to the magnetic basement. To compute the total-field anomaly produced by the basement relief, the 3D integral of the total-field anomaly of a prism is simplified by a 1D integral along the prism thickness, which in turn is multiplied by the horizontal area of the prism. The 1D integral is calculated numerically using the Gauss-Legendre quadrature produced by dipoles located along the vertical axis passing through the prism center. This new magnetic forward modeling overcomes one of the main drawbacks of the nonlinear inverse problem for estimating the basement depths from magnetic data: the intense computational cost to calculate the total-field anomaly of prisms. The new sensitivity matrix is simpler and computationally faster than the one using classic magnetic forward modeling based on the 3D integrals of a set of prisms that parameterize the earth’s subsurface. To speed up the inversion at each iteration, we used the Gauss-Newton approximation for the Hessian matrix keeping the main diagonal only and adding the first-order Tikhonov regularization function. The large sparseness of the Hessian matrix allows us to construct and solve a linear system iteratively that is faster and demands less memory than the classic nonlinear inversion with prism-based modeling using 3D integrals. We successfully inverted the total-field anomaly of a simulated smoothing basement relief with a constant magnetization vector. Tests on field data from a portion of the Pará-Maranhão Basin, Brazil, retrieved a first depth-to-basement estimate that was geologically plausible.


Sign in / Sign up

Export Citation Format

Share Document