Prediction of deep-buried gas carbonate reservoir by combining prestack seismic-driven elastic properties with rock physics in Sichuan Basin, southwestern China
The prediction of seismic reservoirs in marine carbonate areas in the Sichuan Basin, southwestern China, is very challenging because the target zone is deeply buried (more than 6 km), with multiphase tectonic movements, complex diagenesis, and low porosity, and the incident angle of the seismic data is finite. We developed reliable hydrocarbon indicators of a marine carbonate deposit based on prestack elastic impedance (EI) and well observations. Although the hydrocarbon indicators can be calculated from elastic parameters, the inversion for EI-driven elastic attributes is usually unstable. To constrain the inversion process, we discovered a new strategy to recover the elastic properties from EIs within a Bayesian framework (called Bayesian elastic parameter inversion from elastic impedance). We applied the strategy to a carbonate reef identified at the center of a study line based on the geologic context and the seismic reflection patterns. We then used rock-physics analyses to classify the lithologies and the reservoir at a well location. Rock-physics modeling quantified the hydrocarbon sensitivity of the elastic attributes. Fluid substitution was used to investigate the effects of pore fluids on the elastic properties. A comparison of two synthetic amplitude-versus-angle responses (for gas and brine saturation) with real seismic data showed that the reservoir was gas charged. Using well-based crossplot analyses, reliable direct hydrocarbon indicators can be constructed for a deeply buried gas reservoir and were effective for interpretation in an area of marine carbonates in the Sichuan Basin.