Improving the quality of prestack inversion by prestack data conditioning

2015 ◽  
Vol 3 (1) ◽  
pp. T5-T12 ◽  
Author(s):  
Bo Zhang ◽  
Deshuang Chang ◽  
Tengfei Lin ◽  
Kurt J. Marfurt

Prestack seismic inversion techniques provide valuable information of rock properties, lithology, and fluid content for reservoir characterization. The confidence of inverted results increases with increasing incident angle of seismic gathers. The most accurate result of simultaneous prestack inversion of P-wave seismic data is P-impedance. S-impedance estimation becomes reliable with incident angles approaching 30°, whereas density evaluation becomes reliable with incident angles approaching 45°. As the offset increases, we often encounter “hockey sticks” and severe stretch at large offsets. Hockey sticks and stretch not only lower the seismic resolution but also hinder long offset prestack seismic inversion analysis. The inverted results are also affected by the random noises present in the prestack gathers. We developed a three-step workflow to perform data conditioning prior to simultaneous prestack inversion. First, we mitigated the hockey sticks by using an automatic nonhyperbolic velocity analysis. Then, we minimized the stretch at the far offset by using an antistretch workflow. Last, we improved the signal-to-noise ratio by applying prestack structure-oriented filtering. We evaluated our workflow by applying it to a prestack seismic volume acquired over the Fort Worth Basin, Texas, USA. The results inverted from the conditioned prestack gathers have higher resolution and better correlation coefficients with well logs when compared to those inverted from conventional time-migrated gathers.

2016 ◽  
Vol 4 (2) ◽  
pp. SG11-SG18 ◽  
Author(s):  
Jorge Estrada ◽  
Peter Aaron ◽  
Richard Eden

Target-oriented data conditioning is a key part of any reservoir characterization workflow. Data conditioning is used to optimize the match between the synthetic data, used in the prestack inversion, and the real data. When this is done correctly, the accuracy and confidence of inversion results may be greatly improved. This is proved on prestack seismic inversion results from a resource play in Canada. The flow is broken down into prestack gather conditioning, which improves the signal-to-noise and gather flatness, and poststack conditioning, which further improves the coherency prior to applying spectral balancing. As a final key step, spatially variant amplitude balancing is used to calibrate the angle stacks to the expected background trend from the well synthetics. The combination of all steps is demonstrated via [Formula: see text] and mu-rho versus lambda-rho crossplots, between the inverted results and the well measurements, to provide a significant improvement on the resolution and accuracy of the final prestack inversion.


2019 ◽  
Vol 38 (2) ◽  
pp. 151-160 ◽  
Author(s):  
Ronald Weir ◽  
Don Lawton ◽  
Laurence Lines ◽  
Thomas Eyre ◽  
David Eaton

Simultaneous prestack inversion of multicomponent 3D seismic data integrated with structural interpretation can provide an effective workflow to maximize value for unconventional plays. We outline an integrated workflow for characterizing the Duvernay play in western Canada, an emerging world-class low-permeability unconventional resource fairway. This workflow includes the determination of a time-depth relationship using synthetic seismograms, generation of seismic-derived time- and depth-converted structural maps, and calculation of inversion-based parameters of density and P- and S-wave velocity. The model-based procedure includes poststack (acoustic) inversion, amplitude variation with offset prestack inversion, and joint PP-PS inversion. With these rock properties determined, calculations are made to determine Young's modulus, Poisson's ratio, and brittleness. Faults are mapped based on time slices, isochrons, and correlatable vertical displacements of stratigraphic marker reflections. Significant strike-slip movements are identified by lateral displacement on interpreted geologic features, such as channels and reef edges. Seismic-derived attributes, combined with structural mapping, highlight zones that are conducive to hydraulic fracturing as well as areas unfavorable for development. Mapping of structural discontinuities provides a framework for understanding zones of preexisting weakness and induced-seismicity hazards.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R753-R766 ◽  
Author(s):  
Lingqian Wang ◽  
Hui Zhou ◽  
Yufeng Wang ◽  
Bo Yu ◽  
Yuanpeng Zhang ◽  
...  

Prestack inversion has become a common approach in reservoir prediction. At present, the critical issue in the application of seismic inversion is the estimation of elastic parameters in the thin layers and weak reflectors. To improve the resolution and the accuracy of the inversion results, we introduced the difference of [Formula: see text] and [Formula: see text] norms as a nearly unbiased approximation of the sparsity of a vector, denoted as the [Formula: see text] norm, to the prestack inversion. The nonconvex penalty function of the [Formula: see text] norm can be decomposed into two convex subproblems via the difference of convex algorithm, and each subproblem can be solved efficiently by the alternating direction method of multipliers. Compared with the [Formula: see text] norm regularization, the [Formula: see text] minimization can reconstruct reflectivities more accurately. In addition, the [Formula: see text]-[Formula: see text] predictive filtering was introduced to guarantee the lateral continuity of the location and the amplitude of the reflectivity series. The generalized linear inversion and [Formula: see text]-[Formula: see text] predictive filtering are combined for stable elastic impedance inversion results, and three parameters of P-wave velocity, S-wave velocity, and density can be inverted with the Bayesian linearized amplitude variation with offset inversion. The inversion results of synthetic and real seismic data demonstrate that the proposed method can effectively improve the resolution and accuracy of the inversion results.


2012 ◽  
Vol 466-467 ◽  
pp. 400-404
Author(s):  
Jin Zhang ◽  
Huai Shan Liu ◽  
Si You Tong ◽  
Lin Fei Wang ◽  
Bing Xu

Elastic impedance (EI) inversion is one of the prestack seismic inversion methods, which can obtain P-wave and S-wave velocity, density, Poisson ratio, Lame coefficients and other elastic parameters. But there have been many EI formulas nowadays, so which formula should be used in inversion is an urgent problem. This paper divides these formulas into two categories, and use several forward modeling to test the accuracy of these EI formulas. It shows that using the first kind of EI formulas in near offset seismic data can get high precision results.


2015 ◽  
Vol 33 (1) ◽  
pp. 89
Author(s):  
Naiane Pereira de Oliveira ◽  
Amin Bassrei

ABSTRACT. Tomography was incorporated in Exploration Geophysics with the intention of providing high-resolution images of regions in Earth’s subsurface that are characterized as potential reservoirs. In this work, seismic traveltime tomography in the transmission mode was applied to real data from the Dom João Field, Recôncavo Basin, State of Bahia, Brazil. This basin represents a landmark of oil exploration in Brazil and has been intensively studied since the 1950’s. Today, the Recôncavo Basin is still the principal oil producer in the State of Bahia, but there is a demand for new technologies, especially for mature fields, to improve hydrocarbon recovery. Acoustic ray tracing for the computation of traveltimes was used for forward modeling, and the conjugate gradient algorithm with regularization through derivative matrices was used as the inverse procedure. The estimated tomograms were consistent with available data from a sonic log near the acquisition area in terms of the layer geometry, as well as the P-wave velocity range. The results showed that traveltime tomography is feasible for the characterization of reservoirs with a high rate of vertical change, similar to the Dom Jo˜ao Field.Keywords: traveltime tomography, seismic inversion, regularization, reservoir characterization, Recˆoncavo Basin.RESUMO. A tomografia foi incorporada na Geofísica de Exploração justamente para fornecer imagens de alta resolução de regiões do interior da Terra, consideradas como potenciais reservatórios. Neste trabalho aplicamos a tomografia sísmica de tempos de trânsito no modo de transmissão em dados reais do Campo de Dom João, Bacia do Recôncavo, Estado da Bahia, Brasil. Esta bacia representa um marco da exploração de petróleo no Brasil e vem sendo exaustivamente estudada desde a década de 1950. Embora haja uma demanda por novas tecnologias, em especial para campos maduros, com o propósito de se aumentar a recuperação de hidrocarbonetos, a Bacia do Recôncavo é ainda a principal produtora do Estado da Bahia. Para o procedimento da modelagem direta foi utilizado o traçado de raios acústicos e para o procedimento inverso foi utilizado o algoritmo do gradiente conjugado com regularização através de matrizes de derivadas. Os tomogramas estimados foram consistentes com os dados provenientes do perfil sõnico de um poço próximo ao levantamento tomográfico analisado, tanto em termos de geometria de camadas, como também na faixa de velocidades da onda P. Os resultados mostraram que a tomografia de tempos de trânsito é viável para a caracterização de reservatórios com elevada taxa de variação vertical, que é o caso do Campo de Dom João.Palavras-chave: tomografia de tempos de trânsito, inversão sísmica, regularização, caracterização de reservatórios, Bacia do Recôncavo.


2019 ◽  
Vol 38 (5) ◽  
pp. 358-365 ◽  
Author(s):  
Colin M. Sayers ◽  
Sagnik Dasgupta

This paper presents a predictive rock-physics model for unconventional shale reservoirs based on an extended Maxwell scheme. This model accounts for intrinsic anisotropy of rock matrix and heterogeneities and shape-induced anisotropy arising because the dimensions of kerogen inclusions and pores are larger parallel to the bedding plane than perpendicular to this plane. The model relates the results of seismic amplitude variation with offset inversion, such as P- and S-impedance, to the composition of the rock and enables identification of rock classes such as calcareous, argillaceous, siliceous, and mixed shales. This allows the choice of locations with the best potential for economic production of hydrocarbons. While this can be done using well data, prestack inversion of seismic P-wave data allows identification of the best locations before the wells are drilled. The results clearly show the ambiguity in rock classification obtained using poststack inversion of P-wave seismic data and demonstrate the need for prestack seismic inversion. The model provides estimates of formation anisotropy, as required for accurate determination of P- and S-impedance, and shows that anisotropy is a function not only of clay content but also other components of the rock as well as the aspect ratio of kerogen and pores. Estimates of minimum horizontal stress based on the model demonstrate the need to identify rock class and estimate anisotropy to determine the location of any stress barriers that may inhibit hydraulic fracture growth.


2020 ◽  
Vol 8 (4) ◽  
pp. T927-T940
Author(s):  
Satinder Chopra ◽  
Ritesh Kumar Sharma ◽  
James Keay

The Delaware and Midland Basins are multistacked plays with production being drawn from different zones. Of the various prospective zones in the Delaware Basin, the Bone Spring and Wolfcamp Formations are the most productive and thus are the most drilled zones. To understand the reservoirs of interest and identify the hydrocarbon sweet spots, a 3D seismic inversion project was undertaken in the northern part of the Delaware Basin in 2018. We have examined the reservoir characterization exercise for this dataset in two parts. In addition to a brief description of the geology, we evaluate the challenges faced in performing seismic inversion for characterizing multistacked plays. The key elements that lend confidence in seismic inversion and the quantitative predictions made therefrom are well-to-seismic ties, proper data conditioning, robust initial models, and adequate parameterization of inversion analysis. We examine the limitations of a conventional approach associated with these individual steps and determine how to overcome them. Later work will first elaborate on the uncertainties associated with input parameters required for executing rock-physics analysis and then evaluate the proposed robust statistical approach for defining the different lithofacies.


2020 ◽  
pp. SP509-2019-88
Author(s):  
David P. Gold ◽  
Francois Baillard ◽  
Rajat Rathore ◽  
Zhengmin Zhang ◽  
Safrin Arbi

AbstractThe New Guinea Limestone Group was deposited across much of New Guinea, including the Indonesian provinces of West Papua and Papua, as part of a widespread shallow-water carbonate platform during the Paleogene and Neogene. This platform was drowned beneath deeper-water strata from the Middle to Late Miocene. Review of biostratigraphic and seismic data from the Aru Basin, offshore New Guinea, reveals a drowning succession c. 600 m thick deposited during a drowning event that lasted around 4 Ma. The objective of this study was to create a well-to-seismic tie from a single well in the study area using biostratigraphic, seismic and log data. The well-to-seismic tie was built to constrain a new velocity model to better image the drowned carbonate platform and understand the reservoir potential of the drowning succession in the zone of interest using two complimentary techniques: seismic reservoir characterization and numerical stratigraphic forward modelling. The well-to-seismic tie was achieved by matching significant biostratigraphic events, such as unconformities, with seismic horizons using stratigraphy-to-seismic. Modern stratigraphic and seismic reservoir characterization techniques, including stratigraphy-to-seismic, numerical forward modelling, velocity model building, rock physics and seismic inversion, were applied to predict rock properties such as lithology and porosity within the drowning succession.


2019 ◽  
Vol 38 (6) ◽  
pp. 474-479
Author(s):  
Mohamed G. El-Behiry ◽  
Said M. Dahroug ◽  
Mohamed Elattar

Seismic reservoir characterization becomes challenging when reservoir thickness goes beyond the limits of seismic resolution. Geostatistical inversion techniques are being considered to overcome the resolution limitations of conventional inversion methods and to provide an intuitive understanding of subsurface uncertainty. Geostatistical inversion was applied on a highly compartmentalized area of Sapphire gas field, offshore Nile Delta, Egypt, with the aim of understanding the distribution of thin sands and their impact on reservoir connectivity. The integration of high-resolution well data with seismic partial-angle-stack volumes into geostatistical inversion has resulted in multiple elastic property realizations at the desired resolution. The multitude of inverted elastic properties are analyzed to improve reservoir characterization and reflect the inversion nonuniqueness. These property realizations are then classified into facies probability cubes and ranked based on pay sand volumes to quantify the volumetric uncertainty in static reservoir modeling. Stochastic connectivity analysis was also applied on facies models to assess the possible connected volumes. Sand connectivity analysis showed that the connected pay sand volume derived from the posterior mean of property realizations, which is analogous to deterministic inversion, is much smaller than the volumes generated by any high-frequency realization. This observation supports the role of thin interbed reservoirs in facilitating connectivity between the main sand units.


Sign in / Sign up

Export Citation Format

Share Document