Three-parameter prestack seismic inversion based on L1-2 minimization

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R753-R766 ◽  
Author(s):  
Lingqian Wang ◽  
Hui Zhou ◽  
Yufeng Wang ◽  
Bo Yu ◽  
Yuanpeng Zhang ◽  
...  

Prestack inversion has become a common approach in reservoir prediction. At present, the critical issue in the application of seismic inversion is the estimation of elastic parameters in the thin layers and weak reflectors. To improve the resolution and the accuracy of the inversion results, we introduced the difference of [Formula: see text] and [Formula: see text] norms as a nearly unbiased approximation of the sparsity of a vector, denoted as the [Formula: see text] norm, to the prestack inversion. The nonconvex penalty function of the [Formula: see text] norm can be decomposed into two convex subproblems via the difference of convex algorithm, and each subproblem can be solved efficiently by the alternating direction method of multipliers. Compared with the [Formula: see text] norm regularization, the [Formula: see text] minimization can reconstruct reflectivities more accurately. In addition, the [Formula: see text]-[Formula: see text] predictive filtering was introduced to guarantee the lateral continuity of the location and the amplitude of the reflectivity series. The generalized linear inversion and [Formula: see text]-[Formula: see text] predictive filtering are combined for stable elastic impedance inversion results, and three parameters of P-wave velocity, S-wave velocity, and density can be inverted with the Bayesian linearized amplitude variation with offset inversion. The inversion results of synthetic and real seismic data demonstrate that the proposed method can effectively improve the resolution and accuracy of the inversion results.

2019 ◽  
Vol 109 (6) ◽  
pp. 2288-2304 ◽  
Author(s):  
Shuai Zhao ◽  
Wenbin Guo

Abstract We present the results from an onshore seismic refraction and wide‐angle reflection profile, conducted in 2015, across the coastal plain and eastern Piedmont provinces of North Carolina. We use forward modeling to create 1D synthetic seismogram models and then invert first break picks to create 2D P‐ and S‐wave velocity models. The crustal thickness is 38 km beneath the Piedmont and central coastal plain, but it thins to 32 km at the coastline. The average thickness of the upper crust is 11 km with an average P‐wave velocity (VP) of 6.0  km/s and S‐wave velocity (VS) of 3.5  km/s. A prominent seismic low‐velocity zone (LVZ) (VP<6.0 and VS<3.6  km/s) exists between the depths of 6 and 11 km, beneath the western third of the seismic profile. The middle crust varies greatly in thickness, increasing from 3 km in the west (eastern Piedmont) to 13 km in the east (coastal plain), with seismic velocities of 6.5  km/s for VP and 3.8  km/s for VS. The lower crust thins significantly toward the rifted Atlantic margin, decreasing from 24 km thick in the west (Piedmont) to 8 km at the coastline, with velocities of approximately 6.9  km/s for VP and 3.9  km/s for VS. We estimate the composition of the crust by comparing the measured values of VP and Poisson’s ratio with laboratory measurements. The upper and middle crusts are in agreement with a felsic composition, while the lower crustal composition is predominately felsic to intermediate. The LVZ in the upper crust is associated with thin layers of the mylonitic rocks involved in the top and the bottom of thrusting, and the top of the lower crust could be the master detachment fault during the thin‐skinned Alleghanian orogeny. The eastward thinning of the lower crust is consistent with crustal extension during the Mesozoic rifting of the Atlantic margin.


2021 ◽  
Vol 40 (6) ◽  
pp. 454-459
Author(s):  
David J. Went

Global empirical relationships of P-wave to S-wave and density for sandstones and shales are used to model two-term amplitude variation with angle at various depths of burial in a typically compacting siliciclastic basin. Data from the normally pressured Tertiary strata of Judd Basin, Atlantic Margin, West of Shetland, are used as a control. For a typical prospect depth of 1750 m below mudline, forward models of angle-dependent reflectivity reveal that discrimination of lithology (shale and brine sand) and fluid (oil sand) is optimally resolved at a 47° incidence angle (θ). This is equivalent to an angle of 28° on an intercept-gradient crossplot. Repeat experiments at other depths produce similar results but with the angle for optimal lithology and fluid determination shifting slightly with increasing depth. Background trends in seismic data crossplots of intercept versus gradient are typically overprinted by noise that has a disproportionate effect on the gradient. This study suggests that the difference between the noise and background rock-property trend is relatively small, such that in most modern seismic data sets, anomalies should be identifiable on time-windowed crossplots and equivalent weighted stacks. It is proposed that a seismic inversion for relative extended elastic impedance at a 45° incidence angle should capture most anomalies of interest in frontier basins with simple burial histories. An example is illustrated from a seismic line in Mozambique.


2021 ◽  
Author(s):  
Wanbo Xiao ◽  
Siqi Lu ◽  
Yanbin Wang

&lt;p&gt;Despite the popularity of the horizontal to vertical spectral ratio (HVSR) method in site effect studies, the origin of the H/V peaks has been controversial since this method was proposed. Many previous studies mainly focused on the explanation of the first or single peak of the H/V ratio, trying to distinguish between the two hypotheses &amp;#8212; the S-wave resonance and ellipticity of Rayleigh wave. However, it is common both in numerical simulations and practical experiments that the H/V ratio exhibits multiple peaks, which is essential to explore the origin of the H/V peaks.&lt;/p&gt;&lt;p&gt;The cause for the multiple H/V peaks has not been clearly figured out, and once was simply explained as the result of multi subsurface layers. Therefore, we adopted numerical method to simulate the ambient noise in various layered half-space models and calculated the H/V ratio curves for further comparisons. The peak frequencies of the H/V curves accord well with the theoretical frequencies of S-wave resonance in two-layer models, whose frequencies only depend on the S wave velocity and the thickness of the subsurface layer. The same is true for models with varying model parameters. Besides, the theoretical formula of the S-wave resonance in multiple-layer models is proposed and then supported by numerical investigations as in the cases of two-layer models. We also extended the S-wave resonance to P-wave resonance and found that its theoretical frequencies fit well with the V/H peaks, which could be an evidence to support the S-wave resonance theory from a new perspective. By contrast, there are obvious differences between the higher orders of the H/V ratio peaks and the higher orders of Rayleigh wave ellipticity curves both in two-layer and multiple-layer models. The Rayleigh wave ellipticity curves are found to be sensitive to the Poisson&amp;#8217;s ratio and the thickness of the subsurface layer, so the variation of the P wave velocity can affect the peak frequencies of the Rayleigh wave ellipticity curves while the H/V peaks show slight change. The Rayleigh wave ellipticity theory is thus proved to be inappropriate for the explanation of the multiple H/V peaks, while the possible effects of the Rayleigh wave on the fundamental H/V peak still cannot be excluded.&lt;/p&gt;&lt;p&gt;Based on the analyses above, we proposed a new evidence to support the claim that the peak frequencies of the H/V ratio curve, except the fundamental peaks, are caused by S-wave resonance. The relationship between the P-wave resonance and the V/H peaks may also find further application.&lt;/p&gt;


2021 ◽  
Author(s):  
Sheng Chen ◽  
Qingcai Zeng ◽  
Xiujiao Wang ◽  
Qing Yang ◽  
Chunmeng Dai ◽  
...  

Abstract Practices of marine shale gas exploration and development in south China have proved that formation overpressure is the main controlling factor of shale gas enrichment and an indicator of good preservation condition. Accurate prediction of formation pressure before drilling is necessary for drilling safety and important for sweet spots predicting and horizontal wells deploying. However, the existing prediction methods of formation pore pressures all have defects, the prediction accuracy unsatisfactory for shale gas development. By means of rock mechanics analysis and related formulas, we derived a formula for calculating formation pore pressures. Through regional rock physical analysis, we determined and optimized the relevant parameters in the formula, and established a new formation pressure prediction model considering P-wave velocity, S-wave velocity and density. Based on regional exploration wells and 3D seismic data, we carried out pre-stack seismic inversion to obtain high-precision P-wave velocity, S-wave velocity and density data volumes. We utilized the new formation pressure prediction model to predict the pressure and the spatial distribution of overpressure sweet spots. Then, we applied the measured pressure data of three new wells to verify the predicted formation pressure by seismic data. The result shows that the new method has a higher accuracy. This method is qualified for safe drilling and prediction of overpressure sweet spots for shale gas development, so it is worthy of promotion.


2005 ◽  
Vol 42 (6) ◽  
pp. 1205-1222 ◽  
Author(s):  
Gabriela Fernández-Viejo ◽  
Ron M Clowes ◽  
J Kim Welford

Shear-wave seismic data recorded along four profiles during the SNoRE 97 (1997 Slave – Northern Cordillera Refraction Experiment) refraction – wide-angle reflection experiment in northwestern Canada are analyzed to provide S-wave velocity (Vs) models. These are combined with previous P-wave velocity (Vp) models to produce cross sections of the ratio Vp/Vs for the crust and upper mantle. The Vp/Vs values are related to rock types through comparisons with published laboratory data. The Slave craton has low Vp/Vs values of 1.68–1.72, indicating a predominantly silicic crustal composition. Higher values (1.78) for the Great Bear and eastern Hottah domains of the Wopmay orogen imply a more mafic than average crustal composition. In the western Hottah and Fort Simpson arc, values of Vp/Vs drop to ∼1.69. These low values continue westward for 700 km into the Foreland and Omineca belts of the Cordillera, providing support for the interpretation from coincident seismic reflection studies that much of the crust from east of the Cordilleran deformation front to the Stikinia terrane of the Intermontane Belt consists of quartzose metasedimentary rocks. Stikinia shows values of 1.78–1.73, consistent with its derivation as a volcanic arc terrane. Upper mantle velocity and ratio values beneath the Slave craton indicate an ultramafic peridotitic composition. In the Wopmay orogen, the presence of low Vp/Vs ratios beneath the Hottah – Fort Simpson transition indicates the presence of pyroxenite in the upper mantle. Across the northern Cordillera, low Vp values and a moderate-to-high ratio in the uppermost mantle are consistent with the region's high heat flow and the possible presence of partial melt.


Geophysics ◽  
1987 ◽  
Vol 52 (9) ◽  
pp. 1211-1228 ◽  
Author(s):  
Peter Mora

The treatment of multioffset seismic data as an acoustic wave field is becoming increasingly disturbing to many geophysicists who see a multitude of wave phenomena, such as amplitude‐offset variations and shearwave events, which can only be explained by using the more correct elastic wave equation. Not only are such phenomena ignored by acoustic theory, but they are also treated as undesirable noise when they should be used to provide extra information, such as S‐wave velocity, about the subsurface. The problems of using the conventional acoustic wave equation approach can be eliminated via an elastic approach. In this paper, equations have been derived to perform an inversion for P‐wave velocity, S‐wave velocity, and density as well as the P‐wave impedance, S‐wave impedance, and density. These are better resolved than the Lamé parameters. The inversion is based on nonlinear least squares and proceeds by iteratively updating the earth parameters until a good fit is achieved between the observed data and the modeled data corresponding to these earth parameters. The iterations are based on the preconditioned conjugate gradient algorithm. The fundamental requirement of such a least‐squares algorithm is the gradient direction which tells how to update the model parameters. The gradient direction can be derived directly from the wave equation and it may be computed by several wave propagations. Although in principle any scheme could be chosen to perform the wave propagations, the elastic finite‐ difference method is used because it directly simulates the elastic wave equation and can handle complex, and thus realistic, distributions of elastic parameters. This method of inversion is costly since it is similar to an iterative prestack shot‐profile migration. However, it has greater power than any migration since it solves for the P‐wave velocity, S‐wave velocity, and density and can handle very general situations including transmission problems. Three main weaknesses of this technique are that it requires fairly accurate a priori knowledge of the low‐ wavenumber velocity model, it assumes Gaussian model statistics, and it is very computer‐intensive. All these problems seem surmountable. The low‐wavenumber information can be obtained either by a prior tomographic step, by the conventional normal‐moveout method, by a priori knowledge and empirical relationships, or by adding an additional inversion step for low wavenumbers to each iteration. The Gaussian statistics can be altered by preconditioning the gradient direction, perhaps to make the solution blocky in appearance like well logs, or by using large model variances in the inversion to reduce the effect of the Gaussian model constraints. Moreover, with some improvements to the algorithm and more parallel computers, it is hoped the technique will soon become routinely feasible.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1446-1454 ◽  
Author(s):  
Side Jin ◽  
G. Cambois ◽  
C. Vuillermoz

S-wave velocity and density information is crucial for hydrocarbon detection, because they help in the discrimination of pore filling fluids. Unfortunately, these two parameters cannot be accurately resolved from conventional P-wave marine data. Recent developments in ocean‐bottom seismic (OBS) technology make it possible to acquire high quality S-wave data in marine environments. The use of (S)-waves for amplitude variation with offset (AVO) analysis can give better estimates of S-wave velocity and density contrasts. Like P-wave AVO, S-wave AVO is sensitive to various types of noise. We investigate numerically and analytically the sensitivity of AVO inversion to random noise and errors in angles of incidence. Synthetic examples show that random noise and angle errors can strongly bias the parameter estimation. The use of singular value decomposition offers a simple stabilization scheme to solve for the elastic parameters. The AVO inversion is applied to an OBS data set from the North Sea. Special prestack processing techniques are required for the success of S-wave AVO inversion. The derived S-wave velocity and density contrasts help in detecting the fluid contacts and delineating the extent of the reservoir sand.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qing Dong ◽  
Zheng-hua Zhou ◽  
Su Jie ◽  
Bing Hao ◽  
Yuan-dong Li

At engineering practice, the theoretical basis for the cross-over method, used to obtain shear wave arrival time in the downhole method of the wave velocity test by surface forward and backward strike, is that the polarity of P-wave keeps the same, while the polarity of S-wave transforms when the direction of strike inverted. However, the characteristics of signals recorded in tests are often found to conflict with this theoretical basis for the cross-over method, namely, the polarity of the P-wave also transforms under the action of surface forward and backward strike. Therefore, 3D finite element numerical simulations were conducted to study the validity of the theoretical basis for the cross-over method. The results show that both shear and compression waves are observed to be in 180° phase difference between horizontal signal traces, consistent with the direction of excitation generated by reversed impulse. Furthermore, numerical simulation results prove to be reliable by the analytic solution; it shows that the theoretical basis for the cross-over method applied to the downhole wave velocity test is improper. In meanwhile, numerical simulations reveal the factors (inclining excitation, geophone deflection, inclination, and background noise) that may cause the polarity of the P-wave not to reverse under surface forward and backward strike. Then, as to reduce the influence factors, we propose a method for the downhole wave velocity test under surface strike, the time difference of arrival is based between source peak and response peak, and numerical simulation results show that the S-wave velocity by this method is close to the theoretical S-wave velocity of soil.


2019 ◽  
Vol 2 (2) ◽  
pp. 61-66
Author(s):  
Ahmad Fauzi Pohan ◽  
Rusnoviandi Rusnoviandi

Aktivitas gunung lumpur Bledug Kuwu di Jawa  Tengah merupakan fenomena yang menarik dikaji menggunakan pemodelan fisis. Tujuan penelitian ini adalah mengetahui parameter dari medium gunung lumpur Bledug Kuwu. Adapun pemodelan fisis yang dilakukan dengan menggunakan media fisis akuarium berukuran 59 × 59 × 37,3 cm yang diisi material dari lumpur Bledug Kuwu. Sumber letusan dihasilkan dari tekanan kompresor yang dapat diatur kedalaman (10.5, 13, dan 15.5 cm) dan sudut (30o, 45o dan 60o) sumbernya. Sensor yang digunakan geophone komponen vertikal sebanyak 3 buah dengan durasi perekaman selama 5 dan 2,5 detik. Data diambil dengan frekuensi sampel 2 dan 4 kHz untuk masing-masing durasi perekaman. Konfigurasi sumber dan geophone dibuat sesuai dengan pemodelan fisisnya. Pengukuran desnsitas lumpur menunjukkan angka sebesar 1200 kg/m3. Berdasarkan hasil analisis seismogram model fisis diperoleh kecepatan perambatan gelombang-P pada medium lumpur Bledug Kuwu adalah sebesar 48,74 m/s,dan gelombang-S sebesar 28,14 m/s dengan frekuensi dominan antara 20 sampai 25 Hz.   Bledug Kuwu mud volcano activity in Central Java is an interesting phenomenon to be studied using both physical  modeling. The objective of this study was to determine the physical parameters of the medium of Bledug Kuwu. The Physical model was an aquarium with a dimension of 59 × 59 × 37.3 cm filled with Bledug Kuwu’s mud. The eruption source is generated by a compressor pressure that can be controled both the depth(10.5, 13, and 15.5 cm) and the angel of the source (30o, 45o and 60o). The resulting seismic signals were recorded by using 3 vertical component geophones for 10 and 5 seconds durations at a frequency of 2 and 4 kHz respectivel, mud density 1200 kg/m3 . The physical modeling shows that the P-wave velocity of the Bledug Kuwu’s medium is 48.7 m/s, S-wave velocity of Bledug Kuwu’s is 28,14 m/s  with a dominant frequency of 20 to 25 Hz.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042065
Author(s):  
Guojie Yang ◽  
Shuhua Wang

Abstract Aiming at the s-wave velocity prediction problem, based on the analysis of the advantages and disadvantages of the empirical formula method and the rock physics modeling method, combined with the s-wave velocity prediction principle, the deep learning method is introduced, and a deep learning-based logging s-wave velocity prediction method is proposed. This method uses a deep neural network algorithm to establish a nonlinear mapping relationship between reservoir parameters (acoustic time difference, density, neutron porosity, shale content, porosity) and s-wave velocity, and then applies it to the s-wave velocity prediction at the well point. Starting from the relationship between p-wave and s-wave velocity, the study explained the feasibility of applying deep learning technology to s-wave prediction and the principle of sample selection, and finally established a reliable s-wave prediction model. The model was applied to s-wave velocity prediction in different research areas, and the results show that the s-wave velocity prediction technology based on deep learning can effectively improve the accuracy and efficiency of s-wave velocity prediction, and has the characteristics of a wide range of applications. It can provide reliable s-wave data for pre-stack AVO analysis and pre-stack inversion, so it has high practical application value and certain promotion significance.


Sign in / Sign up

Export Citation Format

Share Document